Transcript t1.ppt
Isomer Specific Spectroscopy and Conformational Energetics of ortho-, meta-, and para-Ethynylstyrenes J. Phys. Chem. A, 2005, 109, 4484 60th Annual International Symposium on Molecular Spectroscopy Talitha M. Selby, Jasper R. Clarkson, H. Daniel Lee, and Timothy S. Zwier Diane Mitchell, James A. J. Fitzpatrick, and David W. Pratt Funding by DOE Introduction: Ethynylstyrenes I. Structural-Isomer Specific Spectroscopy C10H8 ? C H* + 4 2 ortho II. meta para Conformational-Isomer Specific Spectroscopy and Dynamics ortho trans meta cis trans cis Ea=? Ea=? D E=? D E=? Robinson, A. G.; Winter, P. R.; Zwier, T. S. J. Phys. Chem. A 2002, 106, 5789. Supersonic-jet Spectroscopy B AD C CA C E B BB A B A A B UV C D C E B* B B*C B* A A C B* Boltzmann distribution of the vibrational population prior to expansion Collisional cooling to zero-point vibrational level 1CR2PI 2CR2PI UV HB Ionization continuum Ionization continuum S1 S1 S1 S0 S0 Ionization continuum S0 (v=0) lhb (10 Hz) lprobe (20 Hz) tuned Light Sources Techniques UV: Nd:YAG pumped dye lasers (285-310 nm) and fourth harmonic (266 nm) of Nd:YAG Resonance enhanced two photon ionization (R2PI) Ultraviolet holeburning spectroscopy (UV HB) Overview R2PI Spectra of the Ethynylstyrenes a) pES 000 Intensity (arbitrary units) 1CR2PI 2510(110) 1910(1310) 2910(6b10) 2010(1310) 3010 3110(6a10) 3210 b) mES (B) 000000(?) 00000 (A) 0 2CR2PI c) oES 1 31100(6a 0 (?)0) 0 000 32400 3010(6a10) 2CR2PI 1 1 2810(6b10) 26 0(1 0) 3210 32800 2010(1310) 2410(1210) 33200 33600 34000 34400 34800 35200 -1 Wavenumbers (cm ) Ionization Potentials: pES below 8.29 eV | mES 8.48 eV | oES 8.53-8.93 eV UV Holeburning Spectrum of ortho-Ethynylstyrene Intensity (arbitrary units) 2CR2PI ortho Para 000impurity Only trans-oES present 000 cis-oES only 5% RT population UVHB ortho 32400 32600 32800 33000 33200 33400 33600 33800 34000 34200 34400 Wavenumbers(cm-1) D E=2.03 kcal/mol c-oES has 1600 cm-1 internal energy pre-expansion kisomerization (1600 cm-1) ~1011 s-1 kcollision early in expansion ~109-107 s-1 Rate of isomerization faster than collision rate. E=1.8 kcal/mol B3LYP/6-31+G* E=0.0 kcal/mol UVHB Spectra of meta-Ethynylstyrenes Intensity (arbitrary units) a) 2CR2PI mES B A b) UVHB mES(A) A(000) c) UVHB mES(B) B(000) 32600 32800 33000 33200 33400 33600 33800 34000 Wavenumbers/(cm-1) B3LYP/6-31+G* Ea≈1200 cm-1 0.08 kcal/mol 0.00 kcal/mol *B3LYP/6-31+G* level of theory B3LYP/6-31+G* 34200 34400 Rotationally Resolved Fluorescence Excitation b red-shifted conformer of mES mES (A) a TDM: ~90% A type 32,670.5 32,673.2 Experimental Simulations a-type transitions 32,672.44 32,672.59 Wavenumber/cm-1 Parameter A′′ (MHz) B′′ (MHz) C′′ (MHz) ′′ DI′′ (amu Å2) A′ (MHz) B′ (MHz) C′ (MHz) ′ DI′ (amu Å2) OMC (MHz) fwhm (MHz) band type Experimental Calc c-mES 2261(2) 2252 982.6(2) 973.4 685.2(2) 679.7 -0.62 -0.1(2) 2217(2) 979.4(2) 679.1(2) -0.61 0.3(2) 3.6 42 ~90% a-type a/b hybrid B3LYP/6-31+G* Calc t-mES 3027 833.2 653.4 Rotationally Resolved Fluorescence Excitation a pES(00 0) pES b 33,405.5 33,408.2 Experimental Simulations a-type transitions 33,406.54 33,406.64 Wavenumber/cm-1 TDM: ~90% A type Parameter A′′ (MHz) B′′ (MHz) C′′ (MHz) ′′ DI′′ (amu Å2) A′ (MHz) B′ (MHz) C′ (MHz) ′ DI′ (amu Å2) OMC (MHz) fwhm (MHz) band type Experimental 5030(2) 709.2(2) 621.5(2) -0.96 0.1(2) 4847(2) 705.7(2) 615.6(2) -0.96 0.5(3) 4.6 42 ~90% a-type a/b hybrid Calculated 5009 703.3 617.7 *Ground state geometry at B3LYP/6-31+G* level of theory. Stimulated Emission Pumping –Population Transfer Spectroscopy Expt’l protocol: 1. Cool Prepare ground 2. Pump state A with a well 3. Dump defined amount of 4. Re-cool energy 5. Probe I. Cooling Initial Cooling in Expansion Collisional cooling UV Pump, to zero-point A AB Dump vibrational level B AA B B B AA B B ABA B A kisom A* A(v=0) kcool kcool Dian, B. C.; Clarkson, J. R.; Zwier, T. S. Science 2004, 303, 1169. 000(B) V. UV Probe, lprobe Population transfer spectroscopy: Fix Pump on A, Probe on B; Tune Dump: Watch population come into B from A A* 000(A) II. UV Pump, lpump New conformer distribution detected by UV BB AA B B B A A B B III. UV Dump, ldump single conformation UV probe IV. Collisional Cooling, isomerization Boltzmann distribution of conformers in the pre-expansion gas mixture SEP excites B A* A* B B B A* A B(v=0) SEP and SEP-PTS of mES a) SEP of cis-meta cis-meta b) trans-meta b) SEP-PTS cis para trans c) SEP of trans -meta trans-meta d) SEP-PTS trans d) para cis 1000 upper bound (1065 cm -1) cis-meta c) lower bound (989 cm -1) ns-ortho upper bound (1070 cm -1) ns-ortho lower bound (990 cm -1) a) 1100 1200 1300 Wavenumbers above ZPL (cm-1) Near-threshold population transfer intensity determined by the competition between isomerization, cooling kisom(E) kcool(E ) trans-ortho cis-meta cis-ortho trans-meta trans-ortho para cis-meta trans-meta Harmonic RRKM estimate: At threshold, kisom(E) = 2.6X109 sec-1 and kcoll = 1.0X109 sec-1 para Bounds on the barrier and relative energies of minima E(A→B) E(B→A) A B DE=E(A→B) - E(B→A) cis-ortho trans-ortho cis-meta trans-meta cis-ortho Compound c-m-ethynylstyrene t-m-ethynylstyrene m-ethynylstyrene Styrene para trans-ortho cis-meta trans-meta para Relative Energy (cm-1) Exp Calc a -75 -81 +29c 0a 0c Barrier to cis-trans isomerization (cm-1) Exp Calc a 990-1070 1237c 1070±8b 1350c Hollas, J. M.; Musa, H.; Ridley, T.; Turner, P. H.; Weisenberger, K. H.; Fawcett, V. J. Mol. Spectrosc. 1982, 94, 437 Comparison of Methods Comparison of Methods Torsional Potential Fitting •Also gives the form of the entire potential energy function along the torsional coordinate. •Requires spectroscopic detection of the torsional energy levels •Assumes the torsional coordinate is the only coordinate involved in isomerization Comparison of Methods Torsional Potential Fitting •Also gives the form of the entire potential energy function along the torsional coordinate. •Requires spectroscopic detection of the torsional energy levels •Assumes the torsional coordinate is the only coordinate involved in isomerization SEP-PTS •Not reliant on assignment of normal mode to reaction coordinate •Relies on the spacing of the SEP transitions, but yes/no question •Relies on isomerization occurring on a time scale that can successfully compete with collisional cooling •Apply to cases where many conformers: Breaks into specific A→B pairs Summary of the Ethynylstyrenes • Only one isomer of oES was observed in the expansion. From calculated energy differences the observed conformer was assigned to the trans conformer. • Two isomers of mES were observed. The red-shifted conformer was identified as the cis conformer from the rotationally resolved fluorescence excitation spectrum. • The barrier to cis→trans isomerization in mES is ~1000 cm-1 and the two conformations are nearly isoenergetic, in qualitative agreement with calculations Acknowledgments Prof. Timothy S. Zwier The Zwier Group -Jasper R. Clarkson H. Daniel Lee Prof. David W. Pratt The Pratt Group -Diane Mitchell -James A. J. Fitzpatrick Funding: Department of Energy Intensity (arbitrary units) UVHB spectrum of trans-ortho-Ethynylstyrene 30 3110 1 S1(A′)←S0(A′) 0 No 3120 or 3020 3010(20)10 2010 00 0 3110(20)10 32400 32600 32800 33000 33200 33400 33600 33800 34000 34200 34400 Wavenumbers(cm-1) large oscillator strength Evidence of vibronic coupling •Intensity of transitions S2(A′) S1(A′) •No overtones •False origin coupled by a′ vibrations small oscillator strength S0 Nature of the S0-S1 Transitions: Transition Dipole Moment Directions a b styrene and phenylacetylene a The direction of the TDM in disubstituted benzenes depends both on the nature of the substituents and their relative positions. divinylbenzenes •All the meta disubstituted benzenes shown have the TDM along the a-axis. a •In para disubstituted benzenes it appears the nature of the substituents does matter for the TDM direction. ethynylstyrenes a •In pES, the vinyl group has a larger influence on the transition T.V. Nguyen, J.W. Ribblett, D.W. Pratt, D. Chem. 283,279,2002 Ribblett, J. W.; Borst, D.andR.; Pratt, W.Phys J. Chem. Phys. J.A. Stearns and T.Z. Zwier, J Phys Chem. A, 107,10723,2003 1999, 111, 8454. a a a a a diethynylbenzenes b Electronic Origin Shifts in Vinyl and Ethynyl Substituted Benzenes phenylacetylene styrene •Trends in ortho, meta, para diethynylbenzenes divinylbenzenes 32000 33000 34000 35000 • Trends in cis and trans mDVB and mES •As substituents become closer together they further red shift ethynylstyrenes 31000 •Electronic origin shifts are additive 36000 Wavenumbers(cm-1) T.V. Nguyen, J.W. Ribblett, and D.W. Pratt, Chem. Phys 283,279,2002 J.A. Stearns and T.Z. Zwier, J Phys Chem. A, 107,10723,2003 J.A. Syage, F. Al Adel, and A.H. Zewail, Chem Phys Lett. 103,15,1983 K. Narayanan, G.C. Chang, K.C. Shieh, C.C. Tung, and W.B. Tzeng, Spectochim Acta A. 52,1703,1996