Transcript MH10.ppt
SIMULATIONS OF VIBRONIC LEVELS IN DEGENERATE ELECTRONIC STATES IN THE PRESENCE OF JAHN-TELLER COUPLING – EXPANSION OF PES THROUGH THIRD ORDER VADIM L. STAKHURSKY, VLADIMIR A. LOZOVSKY, C. BRADLEY MOORE, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th Avenue, Columbus OH 43210. Motivation 1. 2. Jahn-Teller distortion can significantly affect the characteristics of the molecule, e. g. rotational and vibrational spectra, partition function, rate of chem. reaction, enthalpy There is a group of C3v molecules exhibiting Jahn-Teller effect (CH3O, CF3O, CH3S, CF3S, in the ground X2E state CdCH3, MgCH3, ZnCH3 in the excited A2E state); D3h molecules Na3, Ag3, Au3 with JT distorted structure 3. Their vibronic structure is not completely understood, partially because of the computational complexity of the Jahn-Teller problem Harmonic potential JT distorted potential JAHN-TELLER THEOREM For any non-linear molecule in a degenerate electronic state, there exists a displacement of the nuclei along at least one non-totally symmetric normal coordinate, that gives rise to a distortion of the molecular geometry with a concomitant lowering of the energy. Spin-vibronic Hamiltonian e Hˆ ev Hˆ T Vˆ Hˆ SO 3 Standard: 6 6 e+ 6 Vˆ1 Hˆ e Hˆ h ,s ,i Hˆ h ,a , j Hˆ JT l , j Hˆ JTq i 1 j 4 j 4 j 4 1 Qs 2 2 1 Qa 2 2 L k i Qa i e- jj const 2 2 L g iiQa i 2 Additional term: Vˆ2 6 Hˆ i , j 4, i j 1 2 g ij L Qa 2 3 JTq ij 6 6 6 Hˆ JTb ij Hˆ c iii i 1 j 4 i 1 6 Hˆ i 1 j 1, j i 6 c ijj 6 6 Hˆ i 1 j 1, j i k 1 k j , k i 2 bij L Qs i Qa j , i , Qa j , where 2 cijk L Qi Q j Qk e L e 1 and 2 or cijk Eˆ Qi Q j Qk e Eˆ e 1 c ijk SOCJT(*) as a tool for JT problem analysis What is SOCJT? Fortran code for multidimensional Jahn-Teller problem with/without spin-orbit interaction SOCJT gives: Positions of spin-vibronic levels of the molecule in degenerate electronic state Insight into composition of the level in terms of harmonic oscillator quantum numbers |n, l> providing a tool for “labeling”of the levels Calculates vibronic spectrum for absorption or emission experiments (A-E electronic transition, some limitations apply) SOCJT input: PES parameters up two third order: Harmonic frequencies ωi and anharmonisities Linear JT parameters Di Quadratic JT parameters Ki and cross-quadratic terms for interaction of degenerate vibrations Bilinear terms for coupling of symmetric and degenerate modes bij Fermi iteraction terms cijk Eˆ Qi Q j Qk Terms non-diagonal in the projection of the electronic orbital momentum: cijk L 2 Qi Q j Qk Spin-Orbit coupling parameter aze. SOCJT GUI hybrid capabilities SOCJT code is interfaced to spectra simulation and visualization package SpecView The features of the product: Simulate vibronic structure in degenerate electronic state of a C3v molecule with up to 3 Jahn-Teller active e vibrational modes and up to 3 totally symmetric a modes Simulate intensities of vibrational features observed in dispersed fluorescence (DF) and absorption spectra Fast calculation of spectra (2-5 sec for region up to 3000 cm-1 in methoxy) Ability to run non-linear least square fit of simulated lines to frequencies of observed features (Levenberg-Marquardt method) . Vibrational frequencies of CH3O 2840a cm-1 symmetric C-H stretch 2774 cm-1 asymmetric C-H stretch aS. 1362 cm-1 CH3 umbrella 1487 cm-1 scissors 1047 cm-1 C-O stretch 653 cm-1 CH3 rock C. Foster, P. Misra, T.-Y. Lin, C. P. Damo, C. C. Carter, and T. A. Miller, J. Phys. Chem. 92, 5914 (1988). Dispersed Fluorescence spectra of methoxy radical 3361 pumped Experiment Simulation 3351 pumped Experiment Simulation Energy relative to vibrationless level, cm-1 Dispersed Fluorescence spectra of methoxy radical 35 pumped Experiment Simulation 3341 pumped Experiment Simulation Energy relative to vibrationless level, cm-1 Numerical calculations Dispersed Fluorescence spectrum of methoxy radical, 3141 pumped experiment b14= 53 cm-1 b14= 35 cm-1 b14= 15 cm-1 b14=0, K4=0.025 Spin-orbit, No JT b14 – bilinear parameter of coupling of symmetric CH stretch (v 1) with asymmetric CH stretch (v4) Determined constants and comparison with ab-initio aT. Constant This work Aso -139 ω6 1061 D6 0.23 K6 -0.14 ω5 1401 D5 0.058 K5 0.037 ω4 2852 D4 0.0012 K4 -0.025 ω1 2807 b14 53 Ref. a Ref. b Ref. d -108c -134 1082 1116 1118 0.20 0.16 0.20 -0.146 -0.13 1434 1509 1483 0.02 0.01 0.02 0.036 0.038 2891 3153 3109 <0.01 0.00016 0.0007 0.00514 0.00023 3065 3006 -8.1 -9 2822 A. Barckholtz and T. A. Miller, J. Phys. Chem. A 103, 2321 (1999). Höper, P. Botschwina and H. Köppel, J. Chem. Phys. 112, 4132 (2000) and J. Schmidt-Klügmann, H. Köppel, S. Schmatz and P. Botschwina, Chem. Phys. Lett. 369, 21 (2003). cThis value was introduced phenomenologically to match the separation of the vibrationless spin-doublet in work b. dA. V. Marenich and J. E. Boggs, J. Chem. Phys. 122(2), 024308 (2005). cU. Comparison of experimental and calculated vibronic energies of CH3O (X~ 2 E ), including spin-orbit coupling effects Assignment Eexperimenta Ecalcb Ecalcc Ecalcd Assignment Eexperimenta Ecalcb Ecalcc Ecalcd 00 0 0 0 0 5161(e) 1995 2002 2170 2184 2008e 2009 2183 2193 62 61 62 68 2051 2235 2211 683 683 770 760 2161(a1) 2049 61(a1) 32(e) 2075 2074 2089 2221 61(a2) 945 935 1047 1023 2134 2135 2133 2287 31(e) 1045 1044 1046 1116 63(a1) 2188 2213 2353(62a1) 2360(61,2,3e) 1107 1105 1104 1186 5161(e) 2216 2236 2333(3161e) 2389(61,2,3e) 1226 1211 1314 1321 ??? 2230e 2255(3161(e)) 1233 1228 1324 1335 5161(e) 2240 2261 2345(3161e) 2454(5161e) 51(a2) 1344 1340 1409 1515 2291f 2272(3161(e)) 2441(63e) 2469(3161e) 21(e) 1367 1369 1411 1449 2327e 2303(2161(a2)) 2460 2473(2161a2) 1414 1430 1449 1493 2369 2384(3151(a2)) 51(a1) 1434 1429 1601 1447 2394 2437 51(e) 1519 1515 1581 1575 2451 2441(62e) or 2425(2131e) 1524 1525 1562 1585 2475 2472(3151(a1)) 1640e 1641 1770 1780 2475e,a 2486(2131(e)) 1681e 1677 1815 1829 2519 2538 3161(a1) 1748 1727 1825 1891 5161(e) 1995 2002 2170 2184 61(e) 62(e) 62(a1) 63(e) 2393(61,2,3a1) 2516(3151e) 2504 2524 a SEP data by Temps and coworkers6, if not marked otherwise b current work, the constants were slightly adjusted to compensate for a wrong sign of the K5 constant in work by T. Barckholtz et al.20 c J. Schmidt-Klugmann et al.22 d A. Marenich et al.23 e Analysis of the DF data in this work f Averaged position from this DF work and work by Foster et al.12 Conclusions and future work 1. We extended SOCJT Fortran code to include potential energy surface terms up to third order. High-throughput GUI C++/Fortran hybrid is developed for the simulation of the vibrational structure of the electronic transitions (2A-2E) 2. In our future work we will extend the approach to allow for high-throughput simulations of the 2E-2E electronic transitions THANK YOU ACKNOWLEDGMENTS Ohio State University