Transcript lnotes9.ppt
מערכות של חלקיקים כאשר אתה קופץ קדימה ,ראשך וגווך ינועו במסלול פרבולי .לעומת זאת, רקדנית בלט קופצת קדימה וראשה וגווה נעים בקו ישר אופקי .היא כאילו צפה לאורך הבמה. איך היא מצליחה להיפטר מהגרביטציה כך שראשה נע בקו ישר? חבטה בכדור בייסבול שולחת אותו לאוויר במסלול פרבולי לעומת זאת השלכת המחבט תגרום לתנועה הרבה יותר מסובכת .כל חלק מהמחבט נע בתנועה שמשלבת תנועה בלסטית ותנועה סיבובית אבל ישנה נקודה ,הקרויה מרכז המסה ,שממשיכה לנוע במסלול פרבולי. הנקודה הזאת נמצאת בערך במרכז המחבט וניתן למצוא אותה באופן ניסיוני ע"י איזון המחבט על האצבע. 3-21 3-23a 3-23b 3-26 3-27 מרכז המסה y xcm = (m1x1 + m2x2) / (m1+ m2) m1 m2 x1 x2 x ובהכללה למספר רב של מסות xcm = (mixi) / mi =( mixi) / M בשלושה מימדים ,אם חלקיק m iנמצא בנקודה ,riוקטור מרכז המסה יהיה rcm = ( miri) / M ycm = ( miyi) / M zcm = ( mizi) / M xcm= ( mixi) / M אם נתונה התחלקות רציפה של מסות ,כמו למשל בגוף שאיננו נקודתי 1 1 1 xcm xdm ycm ydm z cm zdm M M M ואם הגוף עשוי בצורה אחידה ,ניתן לבצע סכימה על הנפח ולא על המסה כיון שהצפיפות מצטמצמת. M V הצפיפות מצטמצמת ואנו מסכמים רק על הנפח 1 z cm zdV V 1 y cm ydV V מדיסקה אחידה Pשרדיוסה 2R חותכים דיסקה שרדיוסה .Rהיכן מרכז המסה של .P 1 xcm xdV V 2R x Pcm P R מרכז המסה ,בגלל הסימטריה ,נמצא על ציר ה .x-מרכז המסה של הדיסקה המלאה נמצא במרכזה .מרכז המסה של Sנמצא במרכזה. ניתן לראות את הדיסקה המלאה כמורכבת מהדיסקה Pומהדיסקה החסרה החסרה .S S m m P mS P המסות פרופורציוניות לשטח כל דיסקה. m K (2R) 2 ms K π R 2 m m - m K π 3R 2 P S מרכז המסה של Pנמצא בנקודה xשאינו ידוע .אם נבחר את הראשית במרכז הדיסקה הגדולה )m p x m (R S 0 m m P S 2 R KR xR S R 2 3 m 3 KR P m x P S חוק IIשל ניוטון למערכת של חלקיקים כאשר כדור ביליארד פוגע בכדור שני ,המערכת של שני הכדורים ממשיכה לנוע קדימה .אינך מצפה ששני הכדורים יחזרו כלפיך. מה שממשיך לנוע ללא הפרעה ,למרות ההתנגשות ,היא נקודת מרכז המסה ,שבמקרה זה היא הנקודה האמצעית בין שתי המסות. נבחר מערכת של nמסות בעלות מסות שונות ונבדוק את תנועת מרכז המסה ולא את התנועה של כל מסה בנפרד. מרכז המסה היא נקודה ,והיא נעה כאילו כל המסה של המערכת מרוכזת בה .תנועתה נשלטת ע"י החוק F net Ma cm למשואה הזאת יש אותה צורה כמו לחוק IIשל ניוטון .צריך להבחין בנקודות הבאות. Fnet .1הוא סכום הכוחות החיצוניים הפועלים על המערכת .הכוחות ההדדיים (פנימיים) אינן נכללים. M .2היא המסה הכוללת של כל המערכת .אנו מניחים ששום מסה לא נכנסת או יוצאת מהמערכת. acm .3היא תאוצת מרכז המסה של המערכת .אין שום מידע על התאוצות של המסות הבודדות. משוואת התנועה היא בעצם 3משוואות. Fnet,z Ma net,z Fnet,y Ma net,y Fnet,x Ma net,x נבחן את התנהגות כדורי הביליארד .הכדור הראשון נע ללא השפעת כוחות חיצוניים .כלומר ,תאוצת מרכז המסה היא אפס .בהתנגשות עם הכדור השני גם לא מעורבים כוחות חיצוניים ולכן למרכז המסה אין תאוצה .הוא ימשיך לנוע במהירות קבועה. גם בגוף מוצק מתקיים החוק שלעיל .מחבט הבייסבול נע תחת השפעת כוח הגרביטציה כאילו כל המסה מרוכזת בנקודת מרכז המסה. זיקוק שנורה במסלול פרבולי מתפוצץ בנקודה מסוימת .מרכז המסה של הזיקוק ממשיך לנוע במסלול שבו היה ממשיך לולא התפוצץ. כאשר רקדנית הבלט קופצת קדימה במשך הריקוד ,היא ,כלומר מרכז המסה שלה ,ינוע במסלול פרבולי. ברגע עזיבת הבמה היא פורשת ומרימה את רגליה וידיה .את הפעולה הזו עושים כוחות פנימיים. פעולה זו מרימה את מרכז המסה שלה .בכל זאת הוא ממשיך לנוע במסלול פרבולי .עקב כך ,יחסית לגוף ,מוריד את הגובה שמושג ע"י ראשה וגווה. התוצאה היא שראשה וגווה נע במסלול כמעט אופקי ,ונותן את התחושה של ריחוף. הוכחת חוק IIשל ניוטון לגבי מערכת של חלקיקים. Mrcm = m1r1 + m2r2 + m3r3 + ••••• + mnrn גזירה לפי הזמן נותנת Mvcm = m1v1 + m2v2 + m3v3 + ••••• + mnvn וגזירה נוספת Macm = m1a1 + m2a2 + m3a3 + ••••• + mnan אבל miaiהוא הכוח הפועל על חלקיק .i הכוח הזה כולל גם את הכוח הפנימי שחלקיק jמפעיל על חלקיק .iאלא שלפי חוק IIIשל ניוטון הם מתבטלים בזוגות .ולכן Macm = F1 + F2 + F3 + •••••+ Fn כאשר Fiהוא הכוח החיצוני הפועל על חלקיק .i תנע קווי התנע הקווי של חלקיק הוא וקטור שמוגדר p mv כיון שהמסה תמיד חיובית כיוון התנע הוא בכיוון המהירות. המילה קווי מושמטת לפעמים .היא מתווספת בעיקר כדי להבדיל מן המושג תנע זוויתי. לתנע אין יחידות מיוחדות יחידת התנע תהיה [mv] = kg•m/sec ניוטון ניסח את החוק ה IIכך קצב ההשתנות בזמן של התנע של חלקיק שווה לכוח הנקי הפועל על החלקיק ובכיוונו של אותו כוח. dp dt F net ואם המסה אינה תלויה במהירות d dv (m v) m ma dt dt F net תנע של מערכת של חלקיקים נתונה מערכת של חלקיקים ,כל אחד בעל מסה ,מהירות ותנע קווי .על החלקיקים פועלים כוחות ,חיצוניים או פנימיים ע"י חלקיקים אחרים. התנע הקווי של כל המערכת יהיה P p p p p 3 n 1 2 P m v m v m v mn vn 3 3 2 2 1 1 ומתוך הגדרת מרכז המסה P M Vcm התנע הכללי של מערכת חלקיקים שווה למכפלת המסה הכוללת במהירות מרכז המסה. dP dVcm M Macm dt dt ולפי חוק IIשל ניוטון dP Fnet dt כאשר Fnetהוא הכוח החיצוני הפועל על המערכת. הציור משמאל מראה מכונית צעצוע שמסתה 2ק"ג נוסעת בסיבוב .לפני הסיבוב מהירותה היא 0.5מטר לשניה ואחרי הסיבוב היא נעה במהירות של 0.4 מטר לשניה. מהו השינוי pבתנע המכונית כתוצאה מהסיבוב. vf = 0.4i vi = -0.5j pf = 0.8i pi = -1.0j -pi p = pf – pi = 0.8i – (-1.0j) =0.8i +1.0j p pf שימור התנע הקווי נתונה מערכת סגורה ומבודדת .התנע הכללי של המערכת אינו יכול להשתנות. מערכת מבודדת – לא פועלים כוחות חיצוניים מערכת סגורה – שום חלקיק אינו נכנס או יוצא מהמערכת. dP Fnet 0 dt P constant Pf Pi התנע הכללי הקווי בזמן התחלתי ti = התנע הכללי הקווי בזמן מאוחר יותר tf המשוואות הן משוואות וקטוריות ומתקיימות עבור כל רכיב בנפרד. בזריקה בליסטית למשל כוח הגרביטציה פועל רק בכיוון אנכי ולכן התנע האופקי נשאר קבוע. ספינת חלל ותא מטען שמסתם M נעים יחד בחלל במהירות viשל 2100קמ"ש יחסית לשמש בכיוון ציר .x תא המטען ,שמסתו 20%ממסת הרקיטה נפלט עקב פיצוץ ,והספינה נעה במהירות הגדולה ב 500 -קמ"ש מתא המטען. מהי מהירות הספינה החדשה יחסית לשמש? . – מהירות הספינה ביחס לשמשvHS . – מהירות תא המטען ביחס לשמשvMS Pi = Pf Pi = Mvi Pf = (0.2M)vMS + (0.8M)vHS vHS = vrel + vMS = 500 + vMS vMS = vHS - 500 Pf = 0.2M(vHS – 500) + 0.8M vHS vHS = 2200 km/h מערכות עם מסה משתנה -רקיטה בניגוד לכותרת ,מסת המערכת הכוללת את הרקיטה וחומר הדלק שנשרף, נשאר קבוע .מסת הרקיטה בלבד אינו קבוע .למעשה רוב המסה ההתחלתית של הרקיטה הוא חומר הדלק. צופה במערכת אינרציאלית רואה רקיטה בחלל שמסתה Mטסה במהירות .v לאחר זמן :dt מהירות הרקיטה v + dv מסת הרקיטה (dM < 0) M + dM מהירות הגזים יחסית לצופה U מסת הגזים -dM בחלל אין כוחות חיצוניים ולכן יש שימור תנע בין המצב בזמן tובזמן .t+dt Pf Pi )Mv -dM U (M dM)(v dv v dv vrel U U v dv vrel אם המהירות היחסית בין הגזים והרקיטה היא .vrel Mv -dM(v dv - vrel) (M dM)(v dv) Mv -vdM - dMdv vreldM Mv Mdv vdM dMdv vreldM Mdv dM dv - vrel M dt dt .R הוא קצב שריפת הדלק והוא קבוע- -dM/dt שלII לכן המשואה האחרונה היא מעין חוק. היא התאוצה- dv/dt .ניוטון Rvrel Ma . קרוי הדחף של מנוע הרקיטהRvrel האבר dM dv -vrel M dM v dv - v M M Mi vf vi vrel ln Mf f v M f rel i i רקיטה שמסתה ההתחלתית היא 850ק"ג שורפת דלק בקצב של 2.3ק"ג לשניה .הגזים נפלטים במהירות של 2800מטר לשניה יחסית למנוע הרקיטה. .1מהו כוח הדחף של מנוע הרקיטה T = 2.3•2800 = 6400N .2מהי תאוצתה ההתחלתית של הרקיטה. a = Rvrel / M = 2.3•2800/850 = 7.6 m/s2 כדי לשלוח את הרקיטה מעל פני כדור הארץ לחלל יש להעניק לה תאוצה של לפחות .gכלומר כוח הדחף היה צריך להיות לפחות = 850•9.8 .8330N נניח שהרקיטה נשלחה מספינת חלל בחלל .המסה הסופית של הרקיטה (אחרי ששרפה את כל הדלק) היא 180ק"ג .מהי מהירותה הסופית ביחס לספינת החלל בהנחה שהיא מאוד מסיבית ואינה משנה את מהירותה. vf = vrel ln(Mi / Mf) = 2800 ln(850/180) = 4300 m/s