Transcript 379288.pptx
Curso Espectrometría de masas, Electrospray Trampa Iónica y Maldi-Tof UNIVERSIDAD FRANCISCO DE VITORIA MALDI-TOF MS y Análisis de Proteínas Alberto Jorge García Laboratorio de Proteómica Centro de Biología Molecular Severo Ochoa Universidad Autónoma de Madrid- CSIC Oferta del Servicio de Proteómica • Análisis mediante Espectrometría de Masas • Identificación sistemática de proteínas presentes en las bases de datos a partir de geles • La Síntesis de Péptidos y la Secuenciación de Edman son servicios independientes Servicio de “Proteómica” • Digestión manual en gel • Análisis mediante MALDI-TOF: • Obtención del mapa peptídico e identificación mediante huella peptídica (PMF) • Análisis mediante LC-ESI-IT • Buen mapa con mezcla de proteínas: Exclusión dinámica (DE), búsqueda en DB mediante TurboSequest • Mapa pobre ó interés en uno ó varios péptidos determinados: Monitorización de iones sencillos (SIM), búsqueda en DB por Tsequest ó confirmación mediante predicción teórica de fragmentación Equipos disponibles • Un espectrómetro de masas tipo MALDI-TOF, modelo Autoflex de Bruker, equipado con reflector y sistema para PSD • Un espectrómetro de masas de trampa iónica modelo LCQ Classic de Thermo Finnigan, equipado con sistemas de ionización de nanospray y microspray de fabricación propia, acoplado a una bomba de HPLC Beckman Gold controlada por un ordenador IBM PS2 de 500K de RAM y un restrictor de flujo Accurate de LCPackings • Interface “metal needle kit” para el acoplamiento LC-ESIIT regalada por Thermo Finnigan y columna RP de 180 mm Procedimiento de trabajo • Recepción y control de muestras – Aviso previo a la entrega de geles – Escaneo del gel, Confección de ficha de usuario, Asignación de fichero – Instrucciones del trabajo a realizar • Análisis – Digestión manual en gel – Obtención del mapa peptídico mediante MALDI-TOF – Análisis mediante LC-ESI-IT Requisitos para la preparación de geles y digestión • Preparación de geles – – – – Reactivos Manipulación Confección del gel Tinción (Coomassie/Imidazol-Zn, Sypro-Ruby,plata) • Digestión en gel – Procedimiento adaptado de Mann y cols optimizado para portamuestras de Bruker – Control interno de contaminación y eficiencia y externo de eficiencia Identificación mediante PMF • Tres niveles de preparación de muestras: – Sensibilidad normal (Coomassie): método estándar – Alta sensibilidad: método “anchorchip” con matriz HCCA y cristalización homogénea de Bruker – Muy alta sensibilidad (Coomassie, Sypro-Ruby, Plata): método “anchorchip” con matriz DHB y cristalización heterogénea (método sin publicar) Identificación mediante PMF • Métodos de calibración: – “close-external” para búsquedas en DB con 100-150 ppm – mediante “zonas prohibidas” (*) para búsquedas con 50-100 ppm – interna de forma manual, mediante macro ó software (*) para búsquedas con 30-50 ppm • Motores de búsqueda: – Internet (Mascot, Profound) – Motor de desarrollo propio (*) * Campillo, Martín and Vázquez (en preparación) Identificación Proteína Proteómica: Proteoma Péptidos BASE DE DATOS Fragmentos BASE DE DATOS Proteína Identificación Péptido ESTRATEGIA INTEGRADORA PARA EL ANÁLISIS DEL PROTEOMA Digestión “in situ” en paralelo SDS-PAGE Bandas de proteínas 2D-IEF-SDS-PAGE Extracto de péptidos MALDI-TOF mapa de péptidos Identificación de proteína m-desalado automático aislamiento y fragmentación Electrospray-trampa iónica Secuenciación “de novo” Mapa de péptidos (MALDI-TOF) Extracto crudo digestión “en gel” 14000 Intensidad 12000 10000 8000 6000 4000 2000 0 1000 1500 2000 m/z 2500 3000 Identificación de la proteína a partir del mapa de péptidos (“peptide-mass fingerprinting”) Búsqueda en MASCOT (D.Pappin, ICRF, Londres) 1. gi|191618 Mass: 223549 Score: 87 (M76598) alpha cardiac myosin heavy chain [Mus musculus] Observed Mr(expt) Mr(calc) Delta Start End Miss 1061.02 1060.01 1060.13 -0.12 1366 - 1374 0 1085.02 1084.01 1084.32 -0.31 436 443 0 1239.27 1238.26 1238.28 -0.01 1253 - 1262 0 1346.49 1345.48 1345.52 -0.04 24 34 0 1442.63 1441.62 1441.61 0.02 1680 - 1691 0 1489.17 1488.16 1488.57 -0.41 1117 - 1128 0 1602.80 1601.79 1601.82 -0.02 955 968 1 1703.76 1702.75 1702.90 -0.14 1423 - 1436 0 1741.93 1740.92 1740.98 -0.06 726 741 0 1840.03 1839.02 1838.99 0.03 1179 - 1195 0 1896.08 1895.07 1895.02 0.06 1198 - 1214 0 1979.38 1978.37 1978.18 0.19 1620 - 1636 0 2107.39 2106.38 2106.35 0.03 1619 - 1636 1 2277.72 2276.71 2276.54 0.17 1063 - 1081 1 2343.63 2342.62 2342.42 0.20 887 906 0 2809.57 2808.56 2809.04 -0.48 1000 - 1024 1 2837.05 2836.04 2836.07 -0.02 1654 - 1678 1 No match to: 1771.94 Peptide ANSEVAQWR MFNWMVTR TLEDQANEYR LEAQTRPFDIR NNLLQAELEELR IEELEEELEAER DIDDLELTLAKVEK LQNEIEDLMVDVER ILNPAAIPEGQFIDSR DLEEATLQHEATAAALR HADSVAELGEQIDNLQR MEGDLNEMEIQLSQANR KMEGDLNEMEIQLSQANR LTQESIMDLENDKLQLEEK NDLQLQVQAEQDNLNDAEER ALQEAHQQALDDLQAEEDKVNTLTK DTQLQLDDAVHANDDLKENIAIVER MALDI-TOF: How’s It Work? 1. Sample is mixed with matrix & dried on sample plate 4. Ions are accelerated by an electrical field to the same kinetic energy el 20 - 30 kV 5.They drift (or fly) down a field free flight tube where they are separated in space. Flight tube High vacuum 2. Target is introduced into high vacuum of MS High voltage 3. Sample spot is irradiated with laser, desorbing ions into the gas phase and starting the clock measuring the time of •Pulsed laser flight. 7. A data system controls all instrument parameters, acquires the signal vs. time, and permits data processing. Tim e 6. Ions strike the detector at different times, depending on the mass to charge ratio of the ion. MALDI-TOF/MS Laser Sample Target Time-of-Flight Clock Detector Molecular Mass MALDI-TOF/MS matrix analyte sample solution dry samples insert target and perform analysis sample deposition Ionización/Desorción Sample embedded in light-absorbing matrix LASER-excitation of matrix molecules Sample desorption and protonation LASER H+ Matrix for Proteins: sinapinic acid, dihydroxybenzoic acid etc. Matrix for Peptides: 4-hydroxy-a-cyanocinnamic acid, DHB. it co-crystallizes, absorbs laser energy, evaporates and acts as acid Matrix Assisted Laser Desorption / Ionization (MALDI) Laser beam Matrix molecules Matrix ions + Matrix molecules + + + Cationized analyte Analyte molecules Cortesía de Bruker Daltonics Tres niveles de preparación de muestras: – Sensibilidad normal: método estándar. – Alta sensibilidad: método “anchor-chip” con matriz HCCA y cristalización homogénea de Bruker. – Muy alta sensibilidad: método “anchor-chip” con matriz DHB y cristalización heterogénea. Preparación de la muestra: anchor-DHB Fundamentos del TOF MALDI-TOF Laser Source Reflector detector Reflector Linear detector Resolución isotópica a. i . 6000 5000 4000 3000 2000 1000 0 1106 1111 1116 1121 1126 m/ z Voltaje de extracción Extracción retardada Extracción retardada Decomposition occurs in the flight tube Laser Source Decay can occur at any point along here Reflector detector Reflector Linear detector Fundamentals of PSD 1. PSD refers to a method of detecting and measuring the masses of fragment ions formed from a selected precursor ion during the flight time. 2. Fragment ions are mainly formed by unimolecular decomposition after the precursor ions are fully accelerated (after they exit the source—hence postsource decay) 3. Fragment ions are separated in the reflector. PSD fragment ion velocities are the same as their precursors + + All three of these species travel at the same velocity in the flight tube until they reach the mirror. Why? Velocity is determined by initial acceleration. Initial energy = 20 keV. Bond energies = ~ 10 eV, so breaking a bond has a very minor effect on velocities. Neutral fragments are not detected Reflector detector Fragmented precursor ion + + 0 V. Reflector +20 kV Fragment ions take different paths in the reflector Reflector detector Intact precursor ion + + Fragment ion formed by PSD 0 V. Reflector +20 kV PSD ISD