Transcript C05-BPN.ppt
-Artificial Neural NetworkBack Propagation Network 朝陽科技大學 資訊管理系 李麗華 教授 Introduction (1) • BPN = Back Propagation Network • BPN is a layered feedforward supervised network. • BPN provides an effective means of allowing a computer to examine data patterns that may be incomplete or noisy. • BPN can take various type of input, i.e., binary data or real data. • The output of BPN is depending on the transfer function used. (1) If the sigmoid function is used, then the output 0≤y ≤ 1 (2) If the hyperbolic Tangent function is used, then the output : -1 ≤y ≤ 1 朝陽科技大學 李麗華 教授 2 Introduction (2) Architecture: wih X1 H1 θ1 whj Y1 θ2 X2 ‧ ‧ ‧ Xn Y2 H2 ‧ ‧ ‧ ‧ ‧ ‧ Hh θh 朝陽科技大學 李麗華 教授 Yj 3 Introduction (3) • Input layer: [X1,X2,…, Xi, …Xn]. • Hidden layer: can have more than one layer. • derive: net1, net2, …neth; transfer output H1, H2,…,Hh, Hh will be used as the input to derive the result for next layer • Output layer: [Y1,…,Yj]. • Weights: Wij. • Transfer function: Nonlinear Sigmoid function f (net j ) 1 1 e net j (*) The nodes in the hidden layers organize themselves in a way that different nodes learn to recognize different features of the total input space. 朝陽科技大學 李麗華 教授 4 Introduction (4) • Application of BPN is quite broad. – Pattern Recognition (樣本識別; 字母識別) – Prediction (股巿預測) – Classification (客群分類) – Learning (資料學習) – Control (回饋與控制) – CRM (客服分群服務) 朝陽科技大學 李麗華 教授 5 Processing Steps (1) The processing steps can be briefly described as follows. 1. Based on the problem domain, set up the network. 2. Randomly generate weights Wij. 3. Feed a training set, [X1,X2,…,Xn], into BPN. 4. Compute the weighted sum and apply the transfer function on each node in each layer. Feeding the 迴 圈 transferred data to the next layer until the output layer 迴 is reached. 圈 5. The output pattern is compared to the desired output(T) and an error is computed for each unit. 朝陽科技大學 李麗華 教授 6 Processing Steps (2) 6. Feedback the error back to each node in the hidden layer. 迴 圈 7. Each unit in hidden layer receives only a portion of 迴 total errors and these errors then feedback to the 圈 input layer. 8. Go to step 4 until the error is very small. 9. Repeat from step 3 again for another training set. 朝陽科技大學 李麗華 教授 7 Computation Processes(1/10) • The detailed computation processes of BPN. 1. Set up the network according to the input nodes and the output nodes required. Also, properly choosing the hidden layers and nodes. 2. Randomly assigned the weights. 3. Feed the training pattern (set) into the network and do the following computation. θ1 x1 : : Wih θj net1 H1 : Whj : Xi neth Hh : : Xn 朝陽科技大學 李麗華 教授 Wnh θh 8 Yj Computation Processes(2/10) 4. Compute from the Input layer to hidden layer for each node. net h = Wih X i - h i 1 H h f (net h ) 1 e neth 5. Compute from the hidden layer to output layer for each node. net j = Whj H h - j i Y j f (neth ) 1 1 e net j 朝陽科技大學 李麗華 教授 9 Computation Processes(3/10) 6. Calculate the total error & find the difference for correction δj=Yj(1-Yj)( Tj -Yj) δh=Hh(1- Hh) ΣjWhj δj 7. ΔWhj=ηδj Hh ΔΘj = -ηδj ΔWih=ηδh Xi ΔΘh= -ηδh 8. update weights Whj=Whj+ΔWhj ,Wih=Wih+ΔWih , Θj= Θj + ΔΘj, Θh= Θh + ΔΘh 9. Repeat steps 4~8, until the error is very small. 10.Repeat steps 3~9, until all the training patterns are learned. 朝陽科技大學 李麗華 教授 10 Exercise: X1 X2 T -1 -1 0 -1 1 1 Use BPN to solve XOR (1) • Use BPN to solve the XOR problem • Let W11=1, W21= -1, W12= -1, W22=1, W13=1, W23=1, Θ1=1, Θ2=1,Θ3=1, η=10 Θ1 1 -1 1 1 1 0 X1 W11 H1 Θ3 W21 W12 X2 Y1 Θ2 H2 朝陽科技大學 李麗華 教授 W23 11 Exercise: • • • • Use BPN to solve XOR (2) ΔW12=ηδ1 X1 =(10)(-0.018)(-1)=0.18 ΔW21=ηδ1 X2 =(10)(-0.018)(-1)=0.18 ΔΘ1 = -ηδ1 = -(10)(-0.018)=0.18 以下為第一次修正後的權重值. X1 1.18 0.754 -0.82 -0.82 X2 1.18 0.754 朝陽科技大學 李麗華 教授 1.915 12 Discussion About BPN 1. Number of hidden nodes increase, the convergence will get slower. But the error can be minimized. 2. The general concept of designing the number of hidden node uses: # of hidden nodes=(Input nodes + Output nodes)/2, or # of hidden nodes=(Input nodes * Output nodes)1/2 3. Usually, 1~2 hidden layer is enough for learning a complex problem. Too many layers will cause the learning very slow. When the problem is hyperdimension and very complex, then an extra layer could be used 4. Learning rate(η) usually set between [0.1, 1.0], but it depends on how fast and how detail the network shall learn. 朝陽科技大學 李麗華 教授 13 The Gradient Steepest Descent Method(SDM) • The gradient steepest descent method • Recall: n n 1 net j Wij Ai j j • We want the difference of computed output and expected output getting close to 0. (k:represents the number of output node in various layers) E E (1 / 2)k (Tk Ak ) Wij - Wij 2 E so that we can Wij • Therefore, we want to obtain update weights to improve the network results. 朝陽科技大學 李麗華 教授 14 Proof of the Gradient Steepest Descent Method(SDM) (1) net nj A nj net nj ( 2) (1) E E E ( )( ) ( n )( )( ) n n Wij Wij net j Wij A j net j ( 3) For (1) net nj Wij (k Wkj Akn 1 j ) Wij For (2) Ain 1 For (3-1): when n is the output layer E n Aj [1/ 2 (Tk Akn ) 2 ] k Anj -(Tj-Anj ) Anj net nj f (net nj ) net nj f ' (net nj ) For (3-2) when n is the hidden layer netkn 1 E E n 1 ( )( ) k W jk n n 1 n Aj netk Aj k k 令( E n 1 ) k net nk 1 朝陽科技大學 李麗華 教授 15 The Gradient Steepest Descent Method(SDM) (2) • From (1)(2)(3)we have two types of values: When n is for output layer, then we have E (T j A nj ) f ' (net nj ) Ain 1 Wij jn Ain1 then, we get jn (T j Anj ) f ' (net nj ) When n is for hidden layer, then we have E [ kn 1 Wkj ] f ' (net nj ) Ain 1 Wij k jn Ain1 n n 1 n [ W ] f ' ( net k then, we get j kj j ) k 朝陽科技大學 李麗華 教授 16 The Gradient Steepest Descent Method(SDM) (3) E jn Ain 1 Wij W W ΔW ij ij n n 1 ij Wij j Ai j j Δ j jn 朝陽科技大學 李麗華 教授 17 The Gradient Steepest Descent Method(SDM) (4) 1 -netj -1 f (net ) (1 e ) net j 1 e n j f t (net nj ) [(1 e -net j -1 ) ] -2 ][-( e -net j )] e netj e netj 1 net net net (1 e j ) 2 (1 e j ) 1 e j f(net j )( 1 - f(net j )) (Tj - Yj)Yj(1 - Yj) n j [ n 1W ] H (1 H ) j ik j j k if n is output layer if n is hidden layer 朝陽科技大學 李麗華 教授 18 The Gradient Steepest Descent Method(SDM) (5) • Learning computation 1. net j Wih X i h Compute value of the hidden layer i 1 H h f (neth ) 1 e neth 2. net j Whj H h j Compute value of the output layer i 1 Yj f (net j ) net 1 e j 3. j =Yj (1- Yj )(Tj - Yj ) Compute the value difference for correction δh H h ( 1 - H h )Whj δ j j 朝陽科技大學 李麗華 教授 19 The Gradient Steepest Descent Method(SDM) (6) 4. Whj j H h = j Compute the value to be updated Wih h H i 5. Whj Whj Whj j j j Wih Wih Wih h h h 朝陽科技大學 李麗華 教授 20