Transcript CH10.ppt
Chapter 10 Portfolio Theory Investments Figure 3 : Histogram US real return (Feb 1915 – April 2004) 120 100 Frequency 80 60 40 20 0 -0.15 -0.11 -0.07 -0.03 0.01 0.05 0.09 0.13 Correlations and Covariance 3 Correlation is the degree of association between two variables Covariance is the product moment of two random variables about their means Correlation and covariance are related and generally measure the same phenomenon Correlations and Covariance (cont’d) 4 COV ( A, B) AB E ( A A)( B B ) AB COV ( A, B) A B Correlations and Covariance (cont’d) 5 COV ( A, B) AB E ( A A)( B B ) AB COV ( A, B) A B Portfolio Standard deviation Figure 1 : Random selection of stocks 22% Specific/Diversifiable / idiosyncratic risk 10.8% ??% 9.8% Market / Systematic/ non-diversifiable risk 0 1 2 ... 10 20 35 Number of shares in portfolio © K. Cuthbertson and D. Nitzsche Table 2 : Individual stock returns Returns State Interest Growth Prob. Stock 1 Stock 2 1 High Low 0.25 -5 45 2 High High 0.25 5 35 3 Low Low 0.25 10 10 4 Low High 0.25 25 -5 © K. Cuthbertson and D. Nitzsche Table 3 : Summary statistics Stocks Stock 1 Stock 2 Mean, ERi 8.75% 21.25% Std. dev, i 10.83% 19.80% Correlation -0.9549 Covariance -204.688 © K. Cuthbertson and D. Nitzsche Table 4 : Risky portfolio Alternativ e risky portf. Share of Portfolio Stock 2, w2 0 ERp p A Stock 1, w1 1 8.75% 10.83% G 0.75 0.25 11.88% 3.70% P 0.5 0.5 15% 5% Z 0 1 21.25% 19.80% © K. Cuthbertson and D. Nitzsche Figure 2 : Efficient frontier 25 (0, 1) Expected return (%) 20 Z (0.5, 0.5) P G (0.75, 0.25) 15 10 A (1, 0 ) 5 0 0 5 10 15 Standard deviation © K. Cuthbertson and D. Nitzsche 20 25 Table 3 : Capital allocation line 50 45 Expected Return (%) 40 L 35 0.25 lending + 0.75 in risky portfolio 30 P 25 -0.5 borrowing from bank 1.5 in risky portfolio D 20 No borrowing/ no lending 15 10 5 F 0 0 All lending in bank deposit At risk-free rate 5 10 15 Standard Deviation © K. Cuthbertson and D. Nitzsche 20 25 30 Figure 4 : Efficient frontier and CML 45 40 35 Expected Return (%) Q 30 25 Z CML 20 CAL 15 X P 10 5 F A G 0 0 5 10 15 Standard Deviation 20 25 Figure 5 : CML and market portfolio Expected Return SRp = (ERp-r)/p CML L ERL P ERp ERD r wi - optimal proportions at P (market portfolio) ERp - r D p D © K. Cuthbertson and D. Nitzsche M’s L less risk averse than M’s D p L Standard deviation Figure 6 : Efficient frontier and correlation Expected return (%) 25 20 = -1 15 = +0.5 = +1 10 = -0.5 =0 5 0 0 10 20 Std. dev. © K. Cuthbertson and D. Nitzsche 30 Figure 7 : Efficient frontier, many stocks ERp, % p.m. =1.1% =1.0% x B x x x xx x x x x x x x x x x P1 x xx x x P2 x x x x x A x C p , % p.m. © K. Cuthbertson and D. Nitzsche