Pulmonary Hypertension Stephen M. Akers, MD Associate Chief, Pulmonary Critical Care
Download ReportTranscript Pulmonary Hypertension Stephen M. Akers, MD Associate Chief, Pulmonary Critical Care
Pulmonary Hypertension Stephen M. Akers, MD Associate Chief, Pulmonary Critical Care Associate Professor Medicine CMSRU Pulmonary Hemodynamics • Pressure = Flow X Resistance • Ppa - Ppv = Q X PVR • Ppa = Q x PVR + Ppv Ppa = Pulmonary Arterial Pressure Ppv = Pulmonary Venous Pressure Q = Pulmonary Blood Flow PVR = Pulmonary Vascular Resistance Pulmonary Hypertension Increased Flow • Congenital Heart Disease VSD, ASD, Patent Ductus • Liver Disease • Arteriovenous Shunts Pulmonary Hypertension Increased Venous Pressure • Systolic Dysfunction • Diastolic Dysfunction • Ischemic Heart Disease • Valvular Disease • Constrictive Pericarditis • Restrictive Cardiomyopathy Pulmonary Hypertension Increased Vascular Resistance • Pulmonary Vasculopathy • Decreased Cross Sectional Area of Pulmonary Vascular Bed • Hypoxic Vasoconstriction of Pulmonary Arteries Pulmonary Arteriopathy Pulmonary Vasculopathy Pulmonary Hypertension 1ary Pulm HTN Dx Exclusion 2ary Pulm HTN Mult. Causes) Pulmonary Hypertension Classification • • • • I Pulmonary Arterial HTN II Pulmonary Venous HTN III Pulmonary HTN Hypoxia IV Pulmonary HTN Thrombotic Obstruction • V Pulmonary HTN Miscellaneous I Pulmonary Arterial HTN • • • • • • Idiopathic, Familial HIV, Portal HTN, CV Disease Anorexigens, Veno Occlusive Pul Cap Hemangioma Congen Heart Dis, Shisto Cocaine, Amphetamines II Pulmonary Venous HTN • Systolic Heart Disease • Diastolic Heart Disease • Valvular Heart Disease • Ischemic Heart Disease • Restrictive/Constrictive Disease III Pulmonary Hypertension Associated with Hypoxia • COPD • Interstitial Lung Disease • Obstructive Sleep Apnea • Obesity Hypoventilation • High Altitude Cor Pulmonale • Lung Disease Pulm HTN • Hypoxia, Obliteration of Pulmonary Vasculature • COPD, Interstitial Disease, Hypoventilation Cor Pulmonale Cor Pulmonale RV Hypertrophy Cor Pulmonale RV Hypertrophy Cor Pulmonale • Symptoms Dyspnea, Angina, RUQ Fullness, Lightheadedness • Signs JVD, Edema, Ascites IV Pulmonary Hypertension Chronic Thromboembolism • Central Obstruction of Large Pulmonary Arteries • Distal Arteriopathy (remodeling) of Smaller Arterioles Chronic Thromboembolic Obstruction V Miscellaneous Causes • • • • • • Histiocytosis X, LAM Sarcoid Sickle Cell Disease, Vasculitis Myeloproliferative Disorders Compression Pulmonary Vessels Metabolic, Neurofibromatosis Transpulmonary Gradient • Mean Ppa – Ppv (normal < 13) • Ppa = 24 / 9 = 6 + 8 = 14 • Ppv = 5 • TPG = 14 - 5 = 9 mm Hg (Mean PA = 2/3 Diastolic + 1/3 Systolic) Normal Hemodynamic Values • Mean Pulmonary Artery Pressure Normal 15 to 20 mmHg Borderline 20 to 24 Pulmonary Hypertension 25 • Pulmonary Venous Pressure < 15 • Transpulmonary Gradient <13 Transpulmonary Gradient Normal Left Heart Failure Post Capillary Elevated Other Causes Pre Capillary Transpulmonary Gradient Category I • Ppa = 75/30 = 45 • Ppv = 5 • TPG = 45 – 5 = 40 mm Hg Transpulmonary Gradient Category II • Ppa = 60/24 = 36 • Ppv = 20 • TPG = 32 – 20 = 12 mm Hg Pulmonary Vascular Resistance • (Ppa mean – Ppv)/Cardiac Output • Ppa = 21/9; Ppv = 3; CO = 5 • 13 mm – 3 mm / 5 L/m • PVR = 2 mm Hg.min/Liters Pulmonary Vascular Resistance Units • Wood Units mmHg.min/Liters Normal 0.5 t0 2 • Metric Units dyn.s.cm-5 (Wood Units x 80) Normal 20 - 130 Typical PVR Values • Normal Heart Lungs 12 – 7 / 5 = 1 (80) • Left Heart Failure 30 – 20 / 5 = 2 (160) • Scleroderma 60 -10 / 2.5 = 20 (1600) Treatment Options • Prostacyclins • Endothelin Antagonists • Phosphodiesterase Inhibitors vances in Pulmonary Hypertension Winter 2006 Vol 5 No 4, Prostacyclins • Potent Vasodilators • Inhibit • Smooth Muscle Proliferation • Platelet Aggregation • Improve • Hemodynamics • Exercise Tolerance • Survival Endothelin Antagonists • Block Endothelin Receptors • Vasodilatory Anti Proliferative Effects • Oral Drug Minimal Side Effects • Improve • Hemodynamics • Exercise Tolerance • Survival Phosphodiesterase Inhibitors • Increased Cyclic GMP • Vasodilatory Anti Proliferative • Improve • • Hemodynamics Exercise Tolerance • END Treatment Pulmonary Hypertension • World Health Organization Functional Class • Results of Vasodilator Trial WHO Functional Classification Class I asymptomatic Class II SOB ordinary activity Class III SOB < normal activity Class IV SOB any activity or rest vances in Pulmonary Hypertension Winter 2006 Vol 5 No 4, Normal Hemodynamics Multiple Hit Hypothesis • Genetic Predisposition BMP mutation • Second Hit HIV HSV 8 Scleroderma Schistosomiasis Hemodynamic Variant Left Heart Failure • Long-standing Pulm Venous HTN Pulmonary Arterial Vasculopathy Increased LAP e.g. 20 mm Hg Increased Mean PAP e.g. 55 mmHg Increased TPG e.g. 35 mm Hg • Pulmonary HTN “Out of Proportion” Pulmonary Vasculopathy Left Heart Failure • Mechanical Factors Induce Vasoconstriction Vascular Remodeling • Usually Resolves with Elimination Pulmonary Venous Hypertension Transpulmonary Gradient CHF • • • Dilated LV, EF 10-15%, CI 2.0 PA 100/45 (65) PCWP 32 PA-PCWP (65-32=33 (nl 12) Normal Pulmonary Artery Role of Endothelin in Pulmonary HTN • Potent Vasoconstrictor, Smooth Muscle Mitogen and Pro-inflammatory/fibrotic Mediator • Circulating Levels in PA HTN • Staining Muscular Pulmonary Arteries Bosentan Improves Survival McLaughlin Am J Respir Crit Care Med 2003;167:A442 Prostacyclin Improve • Hemodynamics • Exercise capacity • Survival Rubin, et al Ann Int Med 1990;112:485-91 Barst, et al NEJM1996;334:296-301 Bosentan • Improves Hemodynamics • Improves Exercise Capacity • Improves Survival McLaughlin Am J Respir Crit Care Med 2003;167:A442 Pulmonary HTN • Mean PA 25 at Rest ? 30 with Exercise • Diagnosis Echocardiogram Cardiac Catheterization