Hybrid models of magnetized discharge plasmas: fluid electrons + particle ions Gerjan Hagelaar
Download ReportTranscript Hybrid models of magnetized discharge plasmas: fluid electrons + particle ions Gerjan Hagelaar
Hybrid models of magnetized discharge plasmas: fluid electrons + particle ions Gerjan Hagelaar Centre de Physique des Plasmas et de leurs Applications de Toulouse Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France Introduction Magnetic fields used in low-pressure discharges: magnetron electron-cyclotron resonance (ECR) helicon Hall-effect thruster etc… (magnetized discharges) Magnetic field complex physics Insight from hybrid models Plan Elementary physics Hybrid models Limits of hybrid models Illustrative model results: - ECR reactor - Hall thruster - Galathea trap Elementary effects of the magnetic field Cyclotron motion confinement Perpendicular electric field EB drift Collisions destroy magnetic confinement electron ion cyclotron frequency c e B m Larmor radius electron EB drift (azimuthal) collision L v / c B E B Typical conditions plasma pressure plasma density magnetic field electron temperature 0.1 – 10 mTorr 1015 – 1019 m-3 0.001 – 0.1 T 2 – 20 eV lengths Debye length electron Larmor radius ion Larmor radius mean free path plasma size 10-5 – 10-3 m 10-4 – 0.01 m 0.02 – 5 m 0.01 – 1 m 0.02 – 1 m frequencies electron cyclotron electron collision 3108 – 21010 s-1 3105 –108 s-1 Long mean free path Electrons are magnetized collisions + ionization Ions have only few collisions Magnetic field not influenced by plasma Modelling Low pressure particle-in-cell (PIC): electron and ion trajectories space charge electric fields K. A. Ashtiani et al, J. Appl. Phys. 78 (4), 2270-2278 (1995). S. Kondo and K. Nanbu, J. Phys. D: Appl. Phys. 32, 1142-1152 (1999). J. C. Adam et al, Phys. Plasmas 11 (1), 295-305 (2004). Magnetized PIC models cumbersome: high plasma density small time steps, small cells important 2D effects interest in simpler faster models describe electrons by collisional fluid equations Electron fluid equations Electron conservation n e e S ionisation source t flux Anisotropic flux e n e ( n e Te ) drift Mobility tensor (classical theory) diffusion 2 e /m e 2 // 2 2 c c 2 collision frequency cyclotron frequency perpendicular mobility << parallel mobility Hybrid models Non-quasineutral scheme: ion particles ni electron fluid ne Poisson no plasma oscillations large time steps 0 2 e ( ne ni ) Quasineutral scheme: ion particles ni = ne electron fluid (ne (neTe)) i no sheaths large cells (Ohm’s law) R. K. Porteous et al, Plasma Sources Sci. Technol. 3, 25-39 (1994). J. M. Fife, Ph. D. thesis, MIT, 1998. G. J. M. Hagelaar et al, J. Appl. Phys. 91 (9), 5592-5598 (2002). Limits of the electron equations Anomalous transport B empirical parameters e m e ( 2 c ) 1 / 16 B 2 classical mobility ? Bohm mobility Non-local effects //B: inertia, mirror confinement But: flux //B limited by boundaries // n e // // // ( n e Te ) drift diffusion ( r ) * ( ) T e ( ) ln n e ( r ) / n 0 (Boltzmann) potential = constant + diffusion term Magnetic field lines approximately equipotential Numerical problem Extreme anisotropy numerical errors tend to destroy the magnetic confinement Special precautions necessary (flux scheme) 0 10 insulator wall (a) -1 anode a uniform B l cathode h c insulator wall normalized flux 10 standard method -2 10 angle = /6 -3 10 /4 -4 10 analytical (flux method) aspect ratio 1/4 grid 80x20 /3 -5 electron flux in the middle of the channel 10 1 10 100 1000 Hall parameter [cyclotron frequency] / [collision frequency] Examples of model results Non-quasineutral hybrid model sheaths resolved Fixed: Gaussian ionisation source uniform electron temperature (diffusion) electron collision frequency Calculated: electron/ion densities electron/ion fluxes, currents self-consistent potential Example I : Diffusion in ECR reactor grounded wall 0 V process chamber source chamber grounded or insulator insulator ionisation wall source cylinder axis ECR reactor with dielectric wall radial position (m) radial position (m) no (pre)sheath !! potential 0.2 0V 28 V 24 V 0.0 0.0 0.2 0.4 axial position (m) electron density 0.2 14 0.6 0.8 11 -3 4x10 m -3 4x10 m 0.0 0.0 0.2 0.4 0.6 0.8 axial position (m) Magnetic confinement reduces loss to source wall ECR reactor with grounded wall radial position (m) radial position (m) normal (pre)sheath potential 0.2 0V 12 V 16 V 0.0 0.0 0.2 0.4 0.6 0.8 axial position (m) plasma density & current lines 11 -3 0.2 current loop 4x10 m 13 -3 3x10 m 0.0 0.0 0.2 0.4 0.6 0.8 axial position (m) Magnetic confinement shortcircuited by walls A. Simon, Phys. Rev. 98 (2), 317-318 (1955). Example II : Hall-effect thruster cathode -300 V ionisation source dielectric gas plasma anode 0V dielectric cylinder axis Hall-effect thruster cathode sheath negligible -300 V potential 6 35 V 4 -100 V -260 V -230 V 2 radial position (cm) radial position (cm) 6 electron density & current lines ion beam 4 2 15 17 -3 5x10 - 5x10 m log 0 2 4 axial position (cm) 6 0 2 4 axial position (cm) acceleration region Equipotential lines magnetic field lines Applied voltage penetrates in plasma bulk 6 trapped low-energy ions Example III : semi-Galathea trap ionisation source gas coil 0 V source cathode -50 V external cathode -300 V plasma grounded wall 0 V dielectric wall cylinder axis A. I. Morozov and V. V. Savel’ev, Physics – Uspekhi 41 (11), 1049-1089 (1998). Semi-Galathea trap potential radial position (cm) 6 -20 V 4 0V 70 % of ions guided to exit -25 V 0V 2 0 2 4 6 8 electron density & position current lines axial (cm) 6 radial position (cm) negative plasma potential ! (inverted presheath) -50 V electron current from emissive cathode to walls 4 15 17 -3 10 - 10 m log 2 0 2 4 6 8 axial position (cm) Potential well reduces ion wall loss and guides ions to exit Semi-Galathea trap without emission potential cathode sheath radial position (cm) 6 -50 V 7V -5 V 4 0V 2 0 radial position (cm) 6 2 4 electron density axial position (cm) 6 8 6 8 4 15 17 -3 10 -10 m log 2 0 2 4 axial position (cm) Potential well disappears because of cathode sheath Conclusions In magnetized discharges, charged particle transport and space charge fields are different This can be studied in 2D by hybrid models No predictive simulations, but insight in physical principles