Fast waveform digitization with the DRS chip Stefan Ritt Paul Scherrer Institute, Switzerland
Download ReportTranscript Fast waveform digitization with the DRS chip Stefan Ritt Paul Scherrer Institute, Switzerland
Fast waveform digitization with the DRS chip Stefan Ritt Paul Scherrer Institute, Switzerland The MEG Experiment at PSI Needed: Goal: m → e at 10-13 • Pile-up rejection (BG from 108 µ decays in unsegmented calorimeter) • ADC dynamic range of 12 bit • TDC resolution of 40 ps • Analog pipeline (L1 trigger) ~300ns • 3000 channels PMT sum 0.511 MeV 51.5 MeV t ~100ns 2 GS 12 Bit 100 $/Chn Liq. Xe Scintillation Detector Liq. Xe Scintillation Detector Thin Superconducting Coil Stopping Target Muon Beam e+ Timing Counter e+ Drift Chamber Drift Chamber 1m 30 Apr. '07 RT2007 2 Domino Sampling Chip Principle 0.2-2 ns Inverter “Domino” ring chain IN Waveform stored Clock Shift Register Out FADC 33 MHz “Time stretcher” GHz MHz Keep Domino wave running in a circular fashion and stop by trigger Domino Ring Sampler (DRS) 30 Apr. '07 RT2007 3 The DRS3 Chip domino wave 8 inputs Design Properties: Reference clock 30 Apr. '07 • • • • • • shift register MUX 12 channels at 1024 bins Cascadable 6x2k, …, 1x12k bins Sampling speed 10 MHz – 5 GHz Readout speed 33 MHz ROI readout (3 ms for 100 bins) Fabricated in 0.25 mm 1P5M MMC process (UMC), 5 x 5 mm2 • Radiation Hard (CMS Pixel library, R. Horisberger) • Power consumption: 50 mW @ 2 GHz • Packaged chip costs: 35 $ / chn. (MPW run) 3 $ / chn. (SPW run) RT2007 4 PLL Stabilization • Temperature coefficient: 500ps / ºC • Jitter after PLL stabilization: ~200ps / turn • Improved timing with clock reference channel: <100ps Domino Wave Pulse Reference Clock ~200 psec PLL Vspeed R. Paoletti, N. Turini, R. Pegna MAGIC collaboration External Common Reference Clock (1-4 MHz) 30 Apr. '07 RT2007 5 Linearity and Noise • “Fixed pattern noise”: 6 mV (RMS) • Noise after offset correction (in FPGA code during readout): 0.25 mV (RMS) 12 bit SNR DRS3 Nonlinearity 2 Deviation [mV] • Careful design gave linearity 0.1V … 1.1V better ±0.5 mV, Tc ≈ 50 ppm 1.5 1 0.5 0 -0.5 -1 -1.5 -2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 Uin [V] • Bandwidth: 450 MHz, to be improved with small design change for mass production 30 Apr. '07 RT2007 6 VPC & USB boards 32 channels input DRS3 USB interface board DRS2 14-bit flash ADC AD9248 PSI general purpose VME board with 2 PPC cores 30 Apr. '07 RT2007 7 Comparison with other chips V1729 (CAEN) MATACQ chip LABRADOR Univ. Hawaii DRS3 Bandwidth (-3db) 300 MHz > 1000 MHz 450 MHz Sampling frequency 1 or 2 GHz 10 MHz … 3.5 GHz 10 MHz … 5 GHz Full scale range ±0.5 V +0.4 …2.1 V +0.1 … 1.1V Effective #bits 12 bit 10 bit 12 bit Sample points 1 x 2520 9 x 256 12 x 1024 Channel per board 4 N/A 32 Digitization 5 MHz N/A 33 MHz Readout dead time 650 ms 150 ms 3 ms – 370 ms Integral nonlinearity ± 0.1 % ± 0.1 % ± 0.05% Radiation hard No Yes (chip) 30 Apr. '07 No RT2007 8 hits MEG with DRS2 “Virtual oscilloscope” Moving average baseline • Drift chamber anode & cathode signals @ 500 MHz • Moving baseline • 50 ns pile-up rejection • Cluster density particle ID Crosstalk removal by subtracting empty channel Template fit Final noise level: 0.32 mV (bin), 0.07 mV (baseline) 30 Apr. '07 RT2007 9 Real-time aspects How to get rid again of the waveform data? Managing the waveform data • 3000 Channels @ 100 Hz @ 1024 bins @ 24 bit = 880 MB/sec • All data needs calibration • Need extensive data compression • Event rate can be improved if compression moves “upstream” Optimize implementation MIDAS DAQ DRS 30 Apr. '07 FPGA PPC PPC Fiber 84 MB/s VME Front-end PC Gbit Ethernet Back-end PC CPU 100 MB/s CPU RT2007 CPU CPU 11 Compression algorithms in FPGA • Zero suppression: hit if max. value > average + 3 x s • Readout window: start / width in respect to trigger • Pile-up flag: Zero-crossings of first derivation • Re-binning 4:1, 8:1, 16:1 • ADC: Numerical integral of hit over baseline • TDC: Only simple threshold (usable to recognize accidentals) and time-overthreshold • Spline calibration • Waveform fitting 30 Apr. '07 Not feasible in FPGA Must be implemented in PC RT2007 0.5 ns bins 4 ns bins TOT 12 DAQ cluster clock start stop sync pE5 area ‘cave’ Ancillary system Trigger Front-End PCs PC (Linux) PC (Linux) PC (Linux) PC (Linux) PC (Linux) PC (Linux) PC (Linux) PC (Linux) PC (Linux) Trigger Trigger Trigger 20 MHz clock Ready 3 crates DRS DRS DRS DRS DRS DRS Gigabit Ethernet PC (Linux) PC (Linux) PC (Linux) PC (Linux) Trigger Hit registers storage 6 crates 9 VME creates 30 Apr. '07 Event builder On-line farm 11 dual-Xenon PCs with hyper-threading RT2007 13 Event rate before MT 30 Apr. '07 RT2007 14 Multi-threading model Zero-copy ring buffers VME Round-Robin distribution Calibration Thread Calibration Thread VME Transfer Thread Collector Thread Calibration Thread Calibration Thread 30 Apr. '07 RT2007 Network Ring buffer functions in MIDAS: rb_create() rb_get_wp() rb_increment_wp() rb_get_rp() rb_increment_rp() 15 Event rate with 4 threads 30 Apr. '07 RT2007 16 Conclusions • Waveform digitizing with DRS chip opens new exiting possibilities for pile-up recognition and pulse-shape discrimination • This technology can completely eliminate the needs for traditional ADCs and TDCs at attractive costs • Switching from ADC/TDC data to waveforms increases the demand for computing power and storage dramatically and requires new strategies for data reduction • Effective multithreading will be the future in RT computing VME board with DRS chip will probably be available from CAEN by end 2007 30 Apr. '07 RT2007 17