Infrared Spectroscopy IR (FTIR) Leonid Murin 1,2 Joint Institute of Solid State and Semiconductor Physics, Minsk, Belarus Oslo University, Centre for Materials Science and Nanotechnology, Oslo,
Download ReportTranscript Infrared Spectroscopy IR (FTIR) Leonid Murin 1,2 Joint Institute of Solid State and Semiconductor Physics, Minsk, Belarus Oslo University, Centre for Materials Science and Nanotechnology, Oslo,
Infrared Spectroscopy IR (FTIR) Leonid Murin 1,2 1 Joint Institute of Solid State and Semiconductor Physics, Minsk, Belarus 2 Oslo University, Centre for Materials Science and Nanotechnology, Oslo, Norway OUTLINE • Some general notes • Electronic transitions • Local Vibrational Mode spectroscopy BACKGROUND - WHAT IS MEASURED The light transmitted through a sample of thickness d with polished parallel surfaces is described as (1 R) 2 e d I I0 1 R 2 e 2 d where: I0 is the light intensity incident on the sample α is the frequency dependent absorption coefficient R is reflectivity (R ≈ [(n-1)/(n+1)]2 ≈ 0.3 in the mid infrared) T = 300 K (Bruker IFS 113v) 0.2 FZ-Si, d = 3 mm Signal 0.1 0.0 -0.1 -0.2 400 600 800 1000 1200 1400 Wavenumber, cm -1 1600 1800 2000 0.010 T = 300 K (Bruker IFS 113v) FZ-Si, d = 3 mm Signal 0.005 0.000 -0.005 -0.010 800 1000 1200 1400 -1 Wavenumber, cm 1600 0.5 T = 300 K (Bruker IFS 113v) Background (without sample) Signal 0.4 0.3 Raw spectrum, FZ-Si, d = 3 mm 0.2 Raw spectrum Cz-3-J4, 24 GeV p-irr 1E16, d = 3 mm 0.1 0.0 400 600 800 1000 1200 1400 -1 Wavenumber, cm 1600 1800 2000 T = Raw spectrum of a sample / background 0.6 T = 300 K (Bruker IFS 113v) FZ-Si, d = 3 mm Transmission 0.5 0.4 0.3 FZ-Si, d = 5 mm 0.2 0.1 0.0 400 600 800 1000 1200 1400 -1 Wavenumber, cm 1600 1800 2000 T = Raw spectrum of a sample / background 0.6 T = 300 K (Bruker IFS 113v) FZ-Si, d = 3 mm Transmission 0.5 0.4 16 -2 CZ-Si, 24 GeV p-irr 1x10 cm , d = 3 mm 0.3 0.2 0.1 0.0 400 600 800 1000 1200 1400 -1 Wavenumber, cm 1600 1800 2000 A = -ln(I/I0) 4 T = 300 K (Bruker IFS 113v) Absorption 3 2 16 -2 CZ-Si, 24 GeV p-irr 1x10 cm , d = 3 mm 1 FZ-Si, d = 3 mm 0 400 600 800 1000 1200 1400 Wavenumber, cm -1 1600 1800 2000 S = -ln(I/I0) - K x (-ln(Iref/I0)) 1.2 T = 300 K (Bruker IFS 113v) 1.0 16 -2 Absorption CZ-Si, 24 GeV p-irr 1x10 cm , d = 3 mm 0.8 0.6 0.4 0.2 0.0 400 600 800 1000 1200 1400 -1 Wavenumber, cm 1600 1800 2000 S = -ln(I/I0) - K x (-ln(Iref/I0)) 0.12 T = 300 K (Bruker IFS 113v) 0.11 Absorption 0.10 0.09 0.08 16 -2 CZ-Si, 24 GeV p-irr 1x10 cm , d = 3 mm 0.07 0.06 800 850 900 950 Wavenumber, cm 1000 -1 1050 AC = S/d 4.0 T = 300 K (Bruker IFS 113v) 18 Absorption coefficient, cm -1 3.5 NO = 1.06x10 cm -3 3.0 2.5 16 2.0 -2 CZ-Si, 24 GeV p-irr 1x10 cm , d = 3 mm 1.5 1.0 0.5 0.0 400 600 800 1000 1200 1400 Wavenumber, cm -1 1600 1800 2000 AC = S/d 0.40 T = 300 K (Bruker IFS 113v) Absorption coefficient, cm-1 0.38 0.36 15 0.34 -3 NVO = 8.5x10 cm I2 O 0.32 0.30 0.28 0.26 0.24 16 -2 CZ-Si, 24 GeV p-irr 1x10 cm , d = 3 mm 0.22 0.20 800 850 900 950 Wavenumber, cm 1000 -1 1050 DAC = S(irrad - as-grown)/d 0.45 T = 300 K Absorption coefficient, cm-1 VO 0.40 I2O 0.35 IO2, I2O2 IO2, I2O2 0.30 O2i 16 O2i -2 CZ-Si, 24 GeV p-irr 1x10 cm , d = 3 mm 0.25 Oi 0.20 800 850 900 950 1000 Wavenumber, cm 1050 -1 1100 1150 Low temperarure measurements 0.8 VO 16 -3 16 -2 + 1 - Cz1-I4 ([CS = 5x10 cm ) RT irr 1x10 cm p 26 GeV 15 -3 16 -2 + 2 - Cz3-J4 ([CS < 1x10 cm ) RT irr 1x10 cm p 26 GeV CiOi 15 -3 16 -2 + 3 - Cz3-J3 ([CS < 1x10 cm ) DAC: RT irr 1x10 cm p 26 GeV - hot irr 0.6 ICiOi Absorption coefficient, cm -1 18 VO Oi ICi - 1 0.4 I2O 2 IO2 0.2 I2O2 I2O2 IO2 3 0.0 V2O2 O2i O2i -0.2 T = 20 K VO2 800 850 900 950 Wavenumber, cm 1000 -1 1050 1100 V2 generation 1.0 16 T = 20 K -2 + RT irr 1x10 cm p 24 GeV 15 4.7x10 cm 1 - Fz1-I3 (O,C-lean, as-grown) 2 - Cz3-J4 (C-lean, as-grown) 3 - Cz3-J3 (C-lean, hot irr) 4 - Cz1-I4 (C-reach, as-grown) Absorption coefficient, cm -1 0.8 4 -3 15 3.3x10 cm 0.6 0.4 15 2x10 cm 3 -3 2 -3 1 15 1.5x10 cm 0.2 -3 0.0 2700 2720 2740 2760 2780 Wavenumber, cm -1 2800 2820 2840 Electronic transitions • Shallow donors and acceptors • Group VI (S, Se, Te) etc • Thermal double donors (as an example: L.I. Murin, V.P. Markevich, J.L. Lindstrom, M. Kleverman Spectroscopic observation of the TDD0 in silicon, Physica B 340–342 (2003) 1046–1050). TDD0 observation p-type Cz-Si ( = 80 Ohmcm) 18 0.15 TDD1(2p±) -3 [Oi] = 1.1x10 cm 1 - 1250 C 40 min H2 gas 2 - 300 C 2 h 3 - difference 2-1 -1 Absorption coefficient, cm T = 15 K 1 0.10 2 0.05 TDD0(2p±) O2i TDD1 O3i O2i TDD1 (2p0) TDD0 (2p0) TDD0 O2i* O3i 3 0.00 OiH2 900 1000 1100 -1 Wavenumber, cm 1200 1300 TDD0 observation 0.06 TDD1(3p±) Fragment of the difference spectrum 300 C 2 h (air) - 1250 C 40 min (H2) Absorption coefficient, cm -1 0.05 0.04 0.03 TDD0(3p±) TDD1(4p±) 0.02 TDD1(5p±) 0.01 TDD1(6p±) TDD0(4p±) TDD0(5p±) TDD1(4f±) TDD0(4f±) TDD0(6p±)? 0.00 1160 1180 1200 1220 1240 Wavenumber, cm -1 1260 1280 1300 Detection limit Calibration: α = 1 cm-1 corresponds approximately to NTDD = 1013 cm-3 Detection of α = 0.01 cm-1 (NTDD = 1011 cm-3) is reliable LVM spectroscopy “LVM spectroscopy assumes now a very central role among the large number of semiconductor characterization techniques which have been developed over the years and which are continuously refined and improved. When applicable, this technique allows, in many cases, the precise identification of impurity species and their crystal lattice location with excellent sensitivity. Besides, LVM spectroscopy with perturbations such as polarization of the probe light, uniaxial and hydrostatic stress, and isotope substitution can be highly successful in identifying the structure and composition of various kinds of defect complexes.” E.E Haller, Mat. Res. Soc. Symp. Proc. Vol. 378 (1995) 547-565. Detection limits Depend on: Measurement temperature (LT or RT) Sharpness of the lines Wavenumber position Detection limits normally are in the range 5x1013 – 1x1015 cm-3) 16 T = 20 K 0.20 Fz1-I2 15 1 - as-grown, [Oi] = 2x10 cm - -3 18 -2 15 2 - e 6MeV 330-340 C 1x10 cm , [Oi] = 1.5x10 cm -3 Absorption coefficient, cm -1 0.15 3 - difference between 2 and 1 0.10 N2 1 ? N2 0.05 2 3 0.00 VO, V2O -0.05 800 900 1000 Wavenumber, cm -1 1100 Oi 0.04 T = 20 K Fz1-I3 16 -2 + Difference: RT irr 1x10 cm p 24 GeV - as-grown 0.02 Absorption coefficient, cm -1 VO 14 V2O NVO + NV2O = 5x10 cm -3 0.00 N2 -0.02 Oi -0.04 800 850 900 950 1000 1050 Wavenumber, cm -1 1100 1150 1200 0.20 T = 20 K Fz1-I3 0.15 15 -1 Absorption coefficient, cm -3 As-grown, NO of about 2x10 cm 0.10 0.05 N2 N2 0.00 Oi 750 800 850 900 950 1000 Wavenumber, cm -1 1050 1100 1150 1200