Oct 06/AMJ Computational decision support for drug discovery Property profiling and virtual screening of small molecule libraries Anne Marie Munk Jørgensen.
Download ReportTranscript Oct 06/AMJ Computational decision support for drug discovery Property profiling and virtual screening of small molecule libraries Anne Marie Munk Jørgensen.
Oct 06/AMJ Computational decision support for drug discovery Property profiling and virtual screening of small molecule libraries Anne Marie Munk Jørgensen Lundbeck Oct 06/AMJ Focus solely on treatment of diseases in the central nervous system (CNS) •depression •Psychoses •Migraine •Alzheimer •Sleep disorders 5000 people worldwide – app 800 in R & D Outline Oct 06/AMJ o Introduction: What is a small molecule drug? o Introduction: Drug Discovery process o How can computational methods help during the drug discovery phase? o Compound Library profiling according to • Predicted physical-chemical properties • Predicted biological activities (virtual screening) o Protein Homology modelling study A small molecule drug Oct 06/AMJ … is a compound (ligand) which binds to a protein, often a receptor and in this way either initiates a process (agonists) or inhibits the natural signal transmitters in binding (antagonists) The structure/conformation of the ligand is complementary to the space defined by the proteins active site The binding is caused by favourable interactions between the ligand and the side chains of the amino acids in the active site. (Electrostatic interactions, hydrogen bonds, hydrophobic contacts…) The ligand binds in a low energy conformation < 3 kcal/mol Binding site complementarity Oct 06/AMJ HIV-Portease inhibitor JACS,V.16,pp847 (1994) H-bond donating H-bond accepting Hydrophobic Flo98, Colin McMartin. J.Comp-Aided Mol. Design, V.11, pp 333-44 (1997) Example of ligand binding Oct 06/AMJ 1UVT, Trombin Inhibitor No vacancy! Oct 06/AMJ Drug Discovery Oct 06/AMJ Disease Molecular target Proof-of-concept Drug discovery program Natural ligand Bioinformatics Molecular Modelling Computational Chemistry X-ray crystallography Screening SAR Lead In-vivo pharmacology optimisation In-vitro pharmacology Drug Development 1-2-3 Chemistry Mission Of Computatonal chemistry group Oct 06/AMJ Use Computational Chemistry analyses to identify the ”right” compounds to screen i.e. molecules that can modulate targets and have suitable properties to become drugs Choosing the right compounds to screen Oct 06/AMJ Compounds should have properties so that they can be turned into drugs property profilling Select subsets based on either: diversity: select small representative sets (10,000100,000) from large numbers (1-4,000,000) target-specific knowledge: select focused sets based on common features needed for a whole target class (e.g. kinases, G-protein coupled receptors …) use ”virtual screening” to computationally screen the screening file (e.g 2,000,000 compounds) to identify compounds for experimental biochemical screening (e.g. 1,000) Knowledge-based screening Oct 06/AMJ Exploit any knowledge of the target and/or active ligand(s) and/or gene family Virtual (in silico) Screening: computationally screen the compound file to identify subsets that are enriched in actives for biological evaluation can also be applied to virtual libraries (to identify compounds/libraries to synthesise or purchase Oct 06/AMJ …………… Property profilling………… Lipinski statistics on marketed CNS drugs Oct 06/AMJ MW # hydrogen acceptors # hydrogen donors logP # rotatable bonds 1 CNS Like, Drug Like1 present work, 90% limit. < 500 149.4 – 446.6 < 10 1-5 <5 0-3 <5 NR -0.3 – 4.9 0 – 8.4 Lipinski et al., Adv.Drug Del. Revs. 23 (1997) 3. Rule of 5 ”Chemical space” navigator Oct 06/AMJ Global Positioning System (GPS) PCA 1Oprea & Gottfries, J. Comb. Chem 2001 CNS model Oct 06/AMJ PCA 12 descriptors 3 components, R2X=0.71 Blue dots define:: CNS drug space CNS ”world” sub classes Oct 06/AMJ O O F F O O F O N Chiral O O Br N N N H N O O N N O O O H N O Model used to predict ”CNS-likeness” Oct 06/AMJ N O N O F O I O O N O O N I I N O O O O Chiral N H N O N N N N N O H O O O N N N N H H O N N S N O O O O O O O O S N O O O N O O O N Other ways to predict drug properties Oct 06/AMJ I have talked about overall profiling of a large number of compounds…… in terms of CNS-likeness … now I will turn to talk about prediction of two very important ADME parameters: solubility and permeability…. Methods based on Quantitative Structure Property Relationship Technique Oct 06/AMJ PCA: principal component analysis PLS: projection of latent structures by means of partial least squares generalized regression to model the association between a set of X parameters and a Y parameter R2 shows how well the model fits the data; Q2 shows how well a model fits the data if the data is not included in the modelling part (leave one out). Aqueous Solubility Oct 06/AMJ QSPR model n=775,R2=0.84, Q2=0.83 8 2D descriptors, Cerius2 Most important descriptors: logP, hba*hbd, hba, hbd Drugs: –6 < logS < 0; If error of 1 log unit is OK model predicts 60-80% of the compounds correctly Journal of Medicinal Chemistry, 2003, Vol. 46, No. 17 Permeability Oct 06/AMJ QSPR N= 13 R2=0.93 Q2= 0.83 Key descriptors: PSA> Odbl >N-H > ..NPSA >SA Polar descriptors important and …. size matters…. Simple Rule: PSA < 120 Å2 Journal of Medicinal Chemistry, 2003, Vol. 46, No. 4 Virtual Screening Methods Oct 06/AMJ Docking Active molecule Active Inactive Similarity O Fingerprint NH2 Fit to site Active site Cherry-picked for biological screening QSAR Statistical (Bayesian) 1000000010… 1010000010… 1000000011… | Ar 16 | Me Pharmacophore 15 14 40 13 35 30 12 25 11 20 10 15 9 10 8 5 8 9 10 11 12 13 14 15 16 0 MN-1 MN-2 MN-3 MN-4 Search database or virtual library Predict molecular property or in vitro activity || NH2 CO 2D fingerprints to use in virtual screening Oct 06/AMJ C-N N O …01000100110001…. N C-O N F MACCS1 keys – 166 bits acc 11 6 acc 6 …010000000100010…. hyd MOE2, TGT and GpiDAPH 1 2 MDL Information systems Inc. San Leandro, CA Chemical Computing Group ~10.000 bits Similarity Oct 06/AMJ Similarity measure – the Tanimoto coefficient1: TC= Bc / (B1 + B2 – Bc) 1 Willet et al. J. Chem. Inf. Comput. Sci. 1998, 38, 983-996 Similarity search, Enrichment Oct 06/AMJ 208 actives in pool of 10.000 structures O H S S O O O S Chiral O N O N O O O O O O O O 90 80 70 60 50 40 30 20 10 ETA 60 MACCS GPI Random % Active retrieved % Active retrieved ACE 50 40 MACCS 30 GPI 20 Random 10 0 0 0.5 1 2 4 6 8 10 12 14 16 18 20 % top ranking Test set from C. Federico, Pfizer 0.5 1 2 4 6 8 10 12 14 16 18 20 % top ranking PLS-DA on keys GPCR target Oct 06/AMJ ….. If knowledge of more than one active compound…. Scatter Plot 188 active compounds R2Y=0.61 Q2Y=0.57 1.2 26 false positives 1 657 Inactive compounds 0.8 0.6 Could also be done by use of SVM or Bayesian statistics 0.4 17 false negatives 0.2 0 -0.2 0 100 200 300 400 Obs num 500 600 700 800 3D Pharmacophore Fingerprints of ligands Oct 06/AMJ Break molecule down into its pharmacophoric elements Generate conformational models Acceptor Hydrophobic Acceptor Donor Aromatic Acid Base 011010100010100000 Combine to create binary pharmacophore fingerprint or histogram incorporating frequency of occurrence For each conformer, determine all 2/3/4 point distance combinations of pharmacophoric groups 100 90 90 80 80 70 60 50 40 30 20 70 Oct 06/AMJ 60 Percent active retrieved 100 70 60 50 40 30 20 50 40 30 20 10 10 10 0 0 0 20 18 16 14 12 10 8 6 4 2 1 0.5 0.5 1 2 4 Top ranking percent 6 8 10 12 14 16 18 0.5 20 50 30 20 10 Percent active retrieved 50 Percent active retrieved 50 40 40 30 20 10 0 0 4 6 8 10 12 Top ranking percent 14 16 18 20 6 8 10 12 14 16 18 20 14 16 18 20 TXA2 60 2 4 PAF 60 1 2 Top ranking percent 60 0.5 1 Top ranking percent 5HT3 Percent active retrieved ETA HMG Percent active retrieved Percent active retrieved ACE 40 30 20 10 0 0.5 1 2 4 6 8 10 12 Top ranking percent 14 16 18 20 0.5 1 2 4 6 8 10 12 Top ranking percent Figure 2: Enrichment curves showing how many of the actives are retrieved in the top n percent of the ranked data set. 2D 3DNlimit 3DCluster 3D Random Pharmacophore modelling Oct 06/AMJ Observations that modification of some parts of a ligand results in minor changes of activity, whereas modifications of other parts of the ligand result in large change of activity. Pharmacophore element: Atom or functional group essential for biological activity 3D Pharmacophore mode: Collection of pharmacophore elements including their relative position in space Can be used for virtual screening….. Selective Serotonin Reuptake Inhibitors (SSRIs) From TCAs to SSRIs and Beyond Oct 06/AMJ CH 3 N NHCH 3 CN CH 3 O N N CH 3 NHCH 3 CH 3 O F 3C F Br Cl zimelidine citalopram cipramil/celexa fluoxetine prozac/fontex 28.04.1971 14.1.1976 10.1.1974 First synt. Aug 1972 First synt. May 1972 Cl sertraline zoloft 1.11.1979 F 3C F NH NH N O NH 2 O N H indalpine 12.12.1975 paroxetine paxil/seroxat 30.1.1973 O O O fluvoxamine fevarin 20.3.1975 The mechanism of SSRI’s Oct 06/AMJ Pharmacophore modelling example Oct 06/AMJ Fluoxetine Paroxetine Citalopram Sertraline Chapter 13. Pharmacophore Modeling by Automated Methods: Possibilities and Limitations M.Langgård, B.Bjørnholm, K.Gundertofte In "Pharmacophore Perception, Development, and use in Drug Design". Edited by Osman F. Güne International University Line (2000) 3D docking Oct 06/AMJ Docking Active molecule Similarity Active Inactive Fit to site Active site Cherry-picked for biological screening Structure-based (Docking and Scoring) Oct 06/AMJ Need to be able to predict the binding energy of a ligand to a protein binding site many issues make this computationally difficult, as a free energy of binding is required, need to consider solvation/water molecules, flexibility of the site and ligand, polarisation etc Shape is often used as an initial goodness of fit measure, then optionally with electrostatics / pharmacophoric match this can be reversed, using electrostatics / pharmacophores as the primary molecular recognition Docking experiments Oct 06/AMJ RMSD to the X-ray 3D structure lower than 2.00 Å, 100 ligand-protein complexes from Didier Rognan dataset Oct 06/AMJ Homology modelling…….. if you do not have an X-ray of your target…. Model of the serotonian transporter – the biological target of the SSRI’s…. Jørgensen et al., ChemMedChem, in press Human Solute Carriers (SLC) Glt(ph)) 298 Genes – 43 gene families 1XFH (Pyrococcus horikosh Oct 06/AMJ LeuT 2A65 (Aquifex aoelicus) LacY GlpT 1PV7, 1PW4 (E.coli)) SERT, NAT, DAT..) Hediger, M.A. et al, Pflugers Arch – Eur. J. Physiol (2004), 447:465-468 2C3E (Bovine) Aquifex aeolicus Leucine Transporter (1.65Å) Oct 06/AMJ Bacterial homologue of neurotransmitter:sodium symporters =>Template for SERT Yamashita et al. Nature 2005,437, 215-223 Sequence alignment of transporters Oct 06/AMJ 23% sequence identity between LeuT and hSERT. Key residues conserved TM1 TM2 LeuT hSERT gSERT hDAT hNET 1 75 115 56 52 MEVKREHWATRLGLILAMAGNAVGLGNFLRFPVQAAENGGGAFMIPYIIAFLLVGIPLMWIEWAMGRYGGAQGHGTTPAIFYLLWRNRFA HQGERETWGKKVDFLLSVIGYAVDLGNVWRFPYICYQNGGGAFLLPYTIMAIFGGIPLFYMELALGQYHRNGCISIWRKI......CPIF ELGDRETWSKKIDFLLSVIGYAVDLGNVWRFPYICYQNGGGAFLIPYTIMAIFGGIPLFYMELALGQYHRNGCISIWRKI......CPIF EAQDRETWGKKIDFLLSVIGFAVDLANVWRFPYLCYKNGGGAFLVPYLLFMVIAGMPLFYMELALGQFNREGAAGVW.KI......CPIL DAQPRETWGKKIDFLLSVVGFAVDLANVWRFPYLCYKNGGGAFLIPYTLFLIIAGMPLFYMELALGQYNREGAATVW.KI......CPFF LeuT hSERT gSERT hDAT hNET 91 159 199 139 135 KILGVFGLWIPLVVAIYYVYIESWTLGFAIKFLVGLVPEPPPNATDPDSILRPFKEFLYSYIGVPKGDEPILKPSLFAYIVFLITMFINV KGIGYAICIIAFYIASYYNTIMAWALYYLISSFTDQLPWTSCKNS.20.STSPAEEFYTRHVLQIHRSKGLQDLG.GISWQLALCIMLIF ( ) ( ) KGIGFAICIIDLYVASYYNTIMAWVFYYLVSSFTTELPWTSCNNA.20.SISPAEEFYTRQVLQVHRSNGLDDLG.GISWQLTLCLLLIF ( ) KGVGFTVILISLYVGFFYNVIIAWALHYLFSSFTTELPWIHCNNS.25.GTTPAAEYFERGVLHLHQSHGIDDLG.PPRWQLTACLVLVI ( ) KGVGYAVILIALYVGFYYNVIIAWSLYYLFSSFTLNLPWTDCGHT.26.KFTPAAEFYERGVLHLHESSGIHDIG.LPQWQLLLCLMVVV LeuT hSERT gSERT hDAT hNET 181 264 304 249 246 SILIRGISKGI.ERFAKIAMPTLFILAVFLVIRVFLLETPNGTAADGLNFLWTPDFEKLKDPGVWIAAVGQIFFTLSLGFGAIITYASYV TVIYFSIWKGV.KTSGKVVWVTATFPYIILSVLLVRGATLPG.AWRGVLFYLKPNWQKLLETGVWIDAAAQIFFSLGPGFGVLLAFASYN IIVYFSIWKGV.KTSGKVVWVTATFPYVILFILLVRGATLPG.AWRGVLYYLKPEWQKLLATEVWVDAAAQIFFSLGPGFGVLLAYASYN VLLYFSLWKGV.KTSGKVVWITATMPYVVLTALLLRGVTLPG.AIDGIRAYLSVDFYRLCEASVWIDAATQVCFSLGVGFGVLIAFSSYN IVLYFSLWKGV.KTSGKVVWITATLPYFVLFVLLVHGVTLPG.ASNGINAYLHIDFYRLKEATVWIDAATQIFFSLGAGFGVLIAFASYN LeuT hSERT gSERT hDAT hNET 270 352 392 337 334 RKDQDIVLSGLTAATLNEKAEVILGGSISIPAAVAFFGVANAVAIAKAG.AFNLGFITLPAIFSQTAGGTFLGFLWFFLLFFAGLTSSIA KFNNNCYQDALVTSVVNCMTSFVSGFVIFTVLGYMAEMRNEDVSEVAKDAGPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFA KFHNNCYQDALVTSTVNCLTSFVSGFVIFTVLGYMAEMRNEDVSEVAKDMGPSLLFITYAEAIANMPASTFFAIIFFLMLLTLGLDSTFA KFTNNCYRDAIVTTSINSLTSFSSGFVVFSFLGYMAQKHSVPIGDVAKD.GPGLIFIIYPEAIATLPLSSAWAVVFFIMLLTLGIDSAMG KFDNNCYRDALLTSSINCITSFVSGFAIFSILGYMAHEHKVNIEDVATE.GAGLVFILYPEAISTLSGSTFWAVVFFVMLLALGLDSSMG LeuT hSERT gSERT hDAT hNET 359 442 482 246 423 IMQPMIAFLEDEL...KLSRKHAVLWTAAIVFFSAHLVMFLN...KSLDEMDFWAGTIGVVFFGLTELIIFFWIFGADKAWEEINRGGII GLEGVITAVLDEFPHVWAKRRERFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQFCRDVKEMLGF GLEGVITGVLDEFPHVWSKRREFFVLGLIIICFLGSLATLTFGGAYVVKLFEEYATGPAVLTVVFLEAVAVAWFYGITQFCNDVKEMLGF GMESVITGLIDEF.QLLHRHRELFTLFIVLATFLLSLFCVTNGGIYVFTLLDHFAAGTSILFGVLIEAIGVAWFYGVGQFSDDIQQMTGQ GMEAVITGLADDF.QVLKRHRKLFTFGVTFSTFLLALFCITKGGIYVLTLLDTFAAGTSILFAVLMEAIGVSWFYGVDRFSNDIQQMMGF LeuT hSERT gSERT hDAT hNET 443 532 572 515 512 KVPRIYYYVMRYITPAFLAVLLVVWAREYIPKIMEETH...WTVWITRFYIIGLFLFLTFLVFLAERRRNHESA............. SPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCIGTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPT (12) APGWYWRVCWVAISPIFLLFVTCSFLSNPPELRLFDYNYPYWTTVVGYCIGTSSIICIPIYMAYRLIITPGTLKERILKSITPETAT (12) RPSLYWRLCWKLVSPCFLLFVVVVSIVTFRPPHYGAYIFPDWANALGWVIATSSMAMVPIYAAYKFCSLPGSFREKLAYAIAPEKDR (19) RPGLYWRLCWKFVSPAFLLFVVVVSIINFKPLTYDDYIFPPWANWVGWGIALSSMVLVPIYVIYKFLSTQGSLWERLAYGITPENEH (19) TM3 TM4 TM5 TM6 TM8 TM7 TM9 TM11 TM10 TM12 Procedure Oct 06/AMJ 20 initial models Homology modeling (MODELLER) LeuT-SERT Outliers removed Energy minimization Flexible region Backbone+sidechains: TM1+6 coil TM3+8 bend Sidechains: atoms within 8.5Å of escit Fixed region everything else Na1, Na2, Cl 100 refined models Homology modeling (MOE) SERT (XA)EscitalopramSERT Escitalopram XA(G) of nonconserved and/or problematic AA SERT escitalopram model SERT 5-HT model Molecular dynamics simulations Serotonin Transporter Model Oct 06/AMJ Intracellular TM6 TM1 TM3 Membrane TM8 Extracellular Homology Model: 5-HT Binding Site Oct 06/AMJ F341 A173 I172 F335 G442 Y176 Y95 D98 3D picture_2 Pratuangdejkul et al. Curr. Med. Chem. 2005, 12, 2389 Refinement by MD simulations Oct 06/AMJ Resume Oct 06/AMJ Computational methods for o o o o Compound library property profiling, Chem GPS Solubility and permeability QSPR predictions Different virtual screening experiments Homology model of SERT Drug Discovery: like finding a needle in a haystack…. Oct 06/AMJ Computational chemistry efforts ~ Trying to reduce the size of the hay stack…. Serendipity Oct 06/AMJ “To look for the needle in the haystack and coming out with the farmer’s daughter” Arvid Carlsson