Overview of nucleon structure studies Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz College of William & Mary Lattice 2008 Williamsburg, July 14-19, 2008
Download ReportTranscript Overview of nucleon structure studies Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz College of William & Mary Lattice 2008 Williamsburg, July 14-19, 2008
Overview of nucleon structure studies Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz College of William & Mary Lattice 2008 Williamsburg, July 14-19, 2008 nucleon form factors (generalized) parton distributions spin, tomography nucleon resonances Δ(1232),… proton e.m. form factor : status green : Rosenbluth data (SLAC, JLab) Pun05 Gay02 new MAMI/A1 data up to Q2 ≈ 0.7 GeV2 JLab/HallA recoil pol. data new JLab/HallC recoil pol. exp. (spring 2008) : extension up to Q2 ≈ 8.5 GeV2 neutron e.m. form factor : status MAMI JLab/HallC JLab/CLAS JLab/HallA new MIT-Bates (BLAST) data for both p and n at low Q2 new JLab/HallA double pol. exp. (spring 07) : extension up to Q2 ≈ 3.5 GeV2 completed Two-photon exchange effects Rosenbluth vs polarization transfer measurements of GE/GM of proton SLAC, Jlab Rosenbluth data Jlab/Hall A Polarization data Jones et al. (2000) Gayou et al. (2002) Two methods, two different results ! 2γ exchange proposed as explanation Guichon, Vdh (2003) Observables including two-photon exchange Real parts of two-photon amplitudes Normal spin asymmetries in elastic eN scattering directly proportional to the imaginary part of 2-photon exchange amplitudes spin of beam OR target NORMAL to scattering plane OR on-shell intermediate state order of magnitude estimates : target : beam : Beam normal spin asymmetry New MAMI A4 data at backward angles Ee = 0.300 GeV Θe = 145 deg Ee = 0.570 GeV Θe = 35 deg Ee = 0.855 GeV Θe = 35 deg data : MAMI A4 theory : Pasquini & Vdh (2004) also : SAMPLE, Happex, G0, E-158 Two-photon exchange calculations elastic contribution partonic calculation N GPDs Blunden, Melnitchouk, Tjon (2003, 2005) Chen, Afanasev, Brodsky, Carlson, Vdh (2003) whether two-photon exchange is entirely responsible for the discrepancy in the FF extraction is to be determined experimentally Real part of Y2γ 1) ε-independence of GEp/GMp in recoil polarization 2) cross section difference in e+ and e- proton scattering 3) non-linearity of Rosenbluth plot Also imaginary part 4) from induced out-of-plane polarization 5) single-spin target asymmetry Hall C 04-019, completed e and e Hall B 07-005; Olympus/Doris with refurbished BLAST detector Hall C 05-017; being analyzed by-product of 04-019/04-108? Hall A 05-015 (3He ) test of ε-dependence of Pt / Pl new JLab/Hall C data (2008) 1γ result for Pt / Pl The preliminary data for Q2=2.5 GeV2 show no ε-dependence of GEp/GMp at the 0.01 level nucleon FF : lattice prospects F1V state of art : connected diagrams -> OK for isovector quantities LHPColl. full QCD lattice calculations √(r2)1V Pion masses down to less than 300 MeV chiral extrapolation to physical mass Leinweber, Thomas, Young (2001) next step : inclusion of disconnected diagrams LHPC results see talk : Meifeng Lin valence DWF on Asqtad staggered sea GEV new mπ = 293 MeV factor 4 reduction in error modest mπ dependence <r12>V RBC results see talk : T. Yamazaki arXiv:0802.0863 [hep-lat] F1V 2 degenerate dynamical flavors of DWF mπ = 0.493 GeV mπ = 0.607 GeV mπ = 0.695 GeV Puzzle : no strong chiral behavior expected at Q2 ≈ 1 GeV2 , however more than factor 2 deviation with data ! F2V see also talks : J. Zanotti, Ph. Haegler, T. Korzec, H.-W. Lin, … quark transverse charge densities in nucleon (I) q + = q 0 + q3 = 0 photon only couples to forward moving quarks quark charge density operator unpolarized nucleon quark transverse charge densities in nucleon (II) transversely polarized nucleon transverse spin e.g. along x-axis : dipole field pattern empirical quark transverse densities in proton ρT ρ0 induced EDM : dy = - F2p (0) . e / (2 MN) data : Arrington, Melnitchouk, Tjon (2007) densities : Miller (2007); Carlson, Vdh (2007) empirical quark transverse densities in neutron ρT ρ0 induced EDM : dy = - F2n (0) . e / (2 MN) data : Bradford, Bodek, Budd, Arrington (2006) densities : Miller (2007); Carlson, Vdh (2007) empirical transverse transition densities for N -> Δ excitation combination of M1, E2, C2 FFs data : MAID 2007 , Drechsel, Kamalov, Tiator (2007) densities : Carlson, Vdh (2007) monopole dipole quadrupole Generalized Parton Distributions : yield 3-dim quark structure of nucleon Elastic Scattering transverse quark distribution in coordinate space DIS longitudinal quark distribution in momentum space Burkardt (2000,2003) Belitsky,Ji,Yuan (2004) DES (GPDs) fully-correlated quark distribution in both coordinate and momentum space Q2 >> GPDs : P - Δ/2 * t = Δ2 x+ ξ x-ξ P + Δ/2 GPD (x, ξ ,t) ξ=0 Fourier transform of GPDs : simultaneous distributions of quarks w.r.t. longitudinal momentum x P and transverse position b Handbag (bilocal) operator : new way to probe the nucleon Y- y0 y y3 (Y ≈ 0 ) 0 generalized probe ( W±, Z0 ) probe spin 2 (graviton) probe electroweak form factors energy-momentum form factors Why GPDs are interesting Unique tool to explore the internal landscape of the nucleon : 3D quark/gluon imaging of nucleon Access to static properties : constrained (sum rules) by precision measurements of charge/magnetization orbital angular momentum carried by quarks GPDs : transverse image of the nucleon Hu(x, b? ) (tomography) x Guidal, Polyakov, Radyushkin, Vdh (2005) b? (fm) quark contribution to proton spin X. Ji with (1997) parametrizations for E q : PROTON u d s u+d+s M2q GPD : based on MRST2002 μ2 = 2 GeV2 2 Jq 2 Jq valence model Lattice (GPV 01, GPRV 04) (QCDSF) 0.37 0.58 0.66 ± 0.04 0.20 -0.06 -0.04 ± 0.04 no disconnected diagrams so far 0.04 0.04 0.61 0.56 0.62 ± 0.08 see talks on Fri : hadron structure lattice : full QCD, DVCS on proton JLab/Hall A @ 6 GeV Q2 ≈ 2 GeV2 xB = 0.36 DVCS GPDs Difference of polarized cross sections Unpolarized cross sections also JLab/CLAS, HERMES, H1 / ZEUS Bethe-Heitler DVCS on neutron ~ t C ( F ) F1 (t ) H F1 (t ) F2 (t ) H F2 (t ) E 4M 2 I n 0 because F1(t) is small 0 because of cancelation of u and d quarks n-DVCS gives access to the least known and constrained GPD, E JLab / Hall A (E03-106) : preliminary data electromagnetic N -> Δ(1232) transition J P=3/2+ (P33), M ' 1232 MeV, ' 115 MeV N ! transition: N ! (99%), N ! (<1%) non-zero values for E2 and C2 : measure of non-spherical distribution of charges Sphere: Q20=0 Oblate Q20/R2 < 0 : spin 3/2 Prolate: Role of quark core (quark spin flip) versus pion cloud Q20/R2 > 0 Q2 dependence of E2/M1 and C2/M1 ratios M1 data points : MIT-Bates (Sparveris et al., 2005) MAMI : Q2 = 0 (Beck et al., 2000) E2/M1 Q2 = 0.06 (Stave et al., 2006) Q2 = 0.2 (Elsner et al., 2005, Sparveris et al., 2006) EFT calculation predicts the Q2 dependence C2/M1 no pion loops pion loops included Pascalutsa, Vdh (2005) also Gail, Hemmert mπ dependence of E2/M1 and C2/M1 ratios Q2 = 0.1 GeV2 quenched lattice QCD results : at mπ = 0.37, 0.45, 0.51 GeV linear extrapolation in mq ~ mπ2 Nicosia – MIT group : Alexandrou et al. (2005) EFT calculation discrepancy with lattice explained by chiral loops (pion cloud) ! Pascalutsa, Vdh (2005) data points : MAMI, MIT-Bates full QCD results available Alexandrou et al. Magnetic Dipole Moment of (1232) - resonance octet baryon MDMs : precession in external magnetic fied decuplet baryon MDMs : only Ω- lives long enough (weak decay) to be measurable by precession method how about other – strongly decaying decuplet baryons ? J P = 3/2+, M = 1232 MeV, = 115 MeV N -> transition: N -> (99%), N -> (<1%) + p! ( ! ’ + ) ! 0 p Status of μΔ μΔ Δ++ Experiment Δ+ 5.6 ± 1.9 2.7 ± 1.2 ± 1.5 ± 3 [PDG 02] [Kotulla (TAPS) 02] Δ0 Δ- - - SU(6) 5.58 2.79 0 -2.79 lattice (quenched) [Leinweber 92] 4.9 ± 0.6 2.5 ± 0.3 0 -2.5 ± 0.3 HBChPT 4.0 ± 0.4 2.1 ± 0.2 -0.17 ± 0.04 -2.25 ± 0.25 5.4 2.66 -0.08 -2.82 [Butler et al.,94] ChQSM [Kim et al., 04] for Δ+ : high precision exp. + p! ( ! ’+ ) ! 0 p underway using Crystal Ball @ MAMI Chiral behavior of the -resonance magnetic moment quenched lattice points : Leinweber (1992) Cloet,Leinweber,Thomas (2003) Lee et.al. (2004) – revised (2006 chiral calculations Real parts Imag. parts Pascalutsa, Vdh (2004) full lattice QCD calculations : Ω- anisotropic clover dynamical lattices (JLab) background field method Periodic b.c. : magnetic flux continuous over boundary B = n . 2 π / L2 : Damgaard, Heller (1988) μΩ in physical nuclear magnetons EXP. NERSC mΩ = 1.65 GeV Kyklades @ WM -2.02 ± 0.05 C. Aubin JLab full lattice QCD calculations : Δ anisotropic clover dynamical lattices : 243 x 128, aS = 0.1, at = 0.036 fm background field method (patched) m = 366 MeV μΔ in physical nuclear magnetons C. Aubin π Summary Nucleon form factors : -> high precision data at low Q2 : map out transverse quark densities in nucleon -> difference Rosenbluth vs polarization data GEp /GMp : mainly understood as due to two-photon exchange effects (new expt. planned) -> PV e-scattering : strangeness contributions to E and M distributions very small -> lattice QCD : state-of-art full QCD calculations go down to mπ ~ 300 MeV, some puzzles GPDs : -> unifying theme in hadron physics (form factors, parton distributions) -> provide a tomographic image of nucleon -> access to angular momentum of quarks/gluons in nucleon -> encouraging experimental results coming out of HERMES, H1/ZEUS, JLab@6 GeV indicating twist-2 dominance -> future programs : COMPASS, dedictated JLab@12 GeV, EIC… Nucleon excitation spectrum : -> precision data on NΔ form factors : shape of hadrons -> chiral EFT is used in dual role : describe both observables and use in lattice extrapolations strong non-analytic behavior in quark mass due to opening of πN decay channel (interplay of scales)