0.37 mS/mm In0.53Ga0.47As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A.
Download ReportTranscript 0.37 mS/mm In0.53Ga0.47As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A.
0.37 mS/mm In0.53Ga0.47As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Ashish K. Baraskar, Joel Cagnon, B. J. Thibeault, S. Stemmer, A.C. Gossard, and M.J.W. Rodwell ECE and Materials Departments University of California, Santa Barbara, CA Eun Ji Kim, Byungha Shin, and Paul C McIntyre Materials Science and Engineering, Stanford University, Stanford, CA Yong-ju Lee Intel Corporation, Santa Clara, CA 2009 Device Research Conference Pennsylvania State University, State College, PA *[email protected] 1 DRC 2009 Outline • Motivation: III-V MOSFETs • Approach: Self-aligned source/drain by MBE regrowth • FET and contacts Results • Conclusion and future work 2 DRC 2009 Why III-V MOSFETs Silicon MOSFETs: Gate oxide may limit <16 nm scaling Id / Wg ~ cox(Vg-Vth)vinj Id / Qtransit ~ vinj / Lg IBM 45nm NMOS Narayan et al, VLSI 2006 Alternative: In0.53Ga0.47As channel MOSFETs low m* (0.041 mo) → high injection velocity (~ 2×107 cm/s)* → increase drive current, decreased CV/I * 3 Enoki et al , EDL 1990 DRC 2009 Target device structure 3 Al O Energy (eV) 2 2 3 1 0 -1 InGaAs InAlAs -2 -3 -4 0 Target 22 nm gate length 50 100 150 Y (Ang.) 200 250 Control of short-channel effects vertical scaling 1 nm EOT: thin gate dielectric, surface-channel device 5 nm quantum well thickness <5 nm deep source / drain regions ~3 mA/mm target drive current low access resistance self-aligned, low resisitivity source / drain contacts self-aligned N+ source / drain regions with high doping 4 DRC 2009 22 nm InGaAs MOSFET: source resistance LS/D Id I di 1 g mi Rs Rs c Wg LS / D Lg sheet LS / D 2Wg IBM High-k Metal gate transistor Image Source:EE Times • Source access resistance degrades Id and gm • IC Package density : LS/D ~ Lg =22 nm c must be low • Need low sheet resistance in thin ~5 nm N+ layer • Design targets: c ~1 W-mm2, sheet ~ 400 W 5 DRC 2009 22nm ion implanted InGaAs MOSFET Key Technological Challenges • Shallow junctions ( ~ 5 nm), high (~5×1019 cm-3) doping • Doping abruptness ( ~ 1 nm/decade) • Lateral Straggle ( ~ 5 nm) • Deep junctions would lead to degraded short channel effects 6 DRC 2009 InGaAs MOSFET with raised source/drain by regrowth HAADF-STEM1* InGaAs regrowth Interface InGaAs 2 nm * TEM by J. Cagnon, Susanne Stemmer Group, UCSB Self-aligned source/drain defined by MBE regrowth1 Self-aligned in-situ Mo contacts2 Process flow & dimensions selected for 22 nm Lg design; present devices @ 200 nm gate length 1Wistey, EMC 2008 EMC 2009 2Baraskar, 7 DRC 2009 Regrown S/D process: key features Self-aligned & low resistivity ...source / drain N+ regions ...source / drain metal contacts Vertical S/D doping profile set by MBE abrupt on ~ 1 nm scale Gate-first gate dielectric formed after MBE growth uncontaminated / undamaged surface 8 DRC 2009 Process flow* * Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009 9 DRC 2009 Key challenge in S/D process: gate stack etch Requirement: avoid damaging semiconductor surface: Approach: Gate stack with multiple selective etches* FIB Cross-section SiO2 Damage free channel Cr W Process scalable to sub-100 nm gate lengths * Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009 10 DRC 2009 Key challenge in S/D process: dielectric sidewall Sidewall must be kept thin: avoid carrier depletion, source starvation. • Target < 15 nm sidewall in 22 nm Lg device • 20-25 nm SiNx thick sidewalls in present devices • Pulse doping in the barrier: compensate for carrier depletion from Dit 11 DRC 2009 MOSFET SEMs SiO2 SiNx Cr W InGaAs regrowth W/Cr gate Pad Original interface Cross-section after regrowth, but before Mo deposition Mo +InGaAs Ti/Au Pad Top view of completed device 12 DRC 2009 MOSFET characteristics 4.7 nm Al203 , 1×1013 cm-2 pulse doping 1 L =0.8mm, W g g =0.5 V 0.6 ds 0.4 0 0 1 1.5 2 =0.5 V gs_step 0.4 0.2 0.5 gs 0.6 0.2 0 =12mm g,eff V = -1 V to 3.5, V 0.8 gs_step I (mA/mm) ds I (mA/mm) gs L =1.0mm, W g,eff V = -1 V to 3.5, V 0.8 1 =9mm 0 0.5 V (V) ds 1 1.5 2 V (V) ds • Maximum Drive current (Id): 0.95 mA/mm • Peak transconductance (gm): 0.37 mS/mm Id and gm below expected values 13 DRC 2009 FET source resistance 7000 SEM V =3.0 V gs 6000 4000 3000 R on (W-mm) 5000 2000 R +R 1000 S D = 1.0 kW-mm 0 0 2 InGaAs regrowth on unprocessed thin InP* 4 6 Gate Length (mm) 8 10 • Series resistance estimated by extrapolating Ron to zero gate length • Source access resistance ~ 500 W-mm 14 DRC 2009 Source resistance : regrowth TLMs 40 SEM Resistance (W) 35 SEM InGaAs regrowth W~ 20 mm FET 30 25 / Cr / SiO2 gate W Regrowth TLMs No regrowth 20 15 10 R sh 5 ~ 29 W Rc ~ 5.5 W-mm (12.6 W-mm) 2 0 0 5 10 15 20 Contact Separation ( mm) 25 30 • TLMs fabricated on the regrowth far away from the gate • Regrowth sheet resistance ~ 29 W • Mo/InGaAs contact resistance ~ 5.5 W-mm2 (12.6 W-mm) TLM data does not explain 500 W-mm observed FET source resistance 15 DRC 2009 Source resistance: electron depletion near gate SiO2 InGaAs regrowth SiNx Cr W Original interface R1 R2 • Electron depletion in regrowth shadow region (R1 ) • Electron depletion in the channel under SiNx sidewalls (R2 ) 16 DRC 2009 InAs source/drain regrowth Gate InAs regrowth top of gate side of gate Mo S/D metal with N+ InAs underneath Improved InAs regrowth with low As flux for uniform filling1 InAs less susceptible to electron depletion: Fermi pinning above Ec2 1 Wistey et al, EMC 2009 Wistey et al NAMBE 2009. 2Bhargava et al , APL 1997 17 DRC 2009 Conclusion • Self-aligned raised source/drain for scaled channel ( 5nm) • D-FETs: peak Id = 0.95 mA/mm, and peak gm =0.37 mS/mm • InAs Source/Drain E-FETs1 • Next: scale to ~50 nm Lg gate dielectric quality This work was supported by Semiconductor Research Corporation under the Non-classical CMOS Research Program 1Singisetti 18 et al, EDL submitted DRC 2009