Experimental and numerical investigations of stationary mixed flows in 2D flume http://www.hach.ulg.ac.be N.V.
Download ReportTranscript Experimental and numerical investigations of stationary mixed flows in 2D flume http://www.hach.ulg.ac.be N.V.
Experimental and numerical investigations of stationary mixed flows in 2D flume http://www.hach.ulg.ac.be N.V. Nam, F. Kerger, S. Erpicum, B. Dewals, P. Archambeau & M. Pirotton Hydrology, Applied Hydrodynamics and Hydraulic Constructions (HACH) Liège,14/11/2011 ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Outline Acomen 2011 • Introduction • Methodology • Physical experiment http://www.hach.ulg.ac.be • Numerical modeling • Conclusions ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Introduction Acomen 2011 • Mixed flows: are known as the simultaneous occurrence of free- surface and pressurized flows. 1- Water supply systems http://www.hach.ulg.ac.be 3- Storm water systems 2- Sewer systems 4- Hydroelectric systems and so on. ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Introduction • Mixed flows: have been investigated mainly for 1D configurations (Wiggert (1972), Cardle et al. (1989), Gómez and Achiaga (2001), Vasconcelos and Wright (2005), Erpicum et al. (2008), Kerger et al. (2008), Wright et al. (2008), etc.) http://www.hach.ulg.ac.be • But mixed flows present often 2D characteristics experimental and numerical investigation of 2D mixed flows 1st step: - simple configurations - steady flow ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Acomen 2011 Methodology Acomen 2011 2D rectangular cross-section channels connected by a conduit Three geometries – Model A: Uniform rectangular cross-section conduit c r o ss-sec t io n pl a n v iew – Model B: Convergent rectangular cross-section conduit c r o ss-sec t io n http://www.hach.ulg.ac.be pl a n v iew – Model C: Parallel an uniform rectangular cross-section pressure conduit and an uniform rectangular cross-section free surface channel. c r o ss-sec t io n pl a n v iew ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Methodology Acomen 2011 Geometries Model A Model B http://www.hach.ulg.ac.be Experiment modeling Model C Numerical modeling Q=[5-45(l/s)] (8-10) tests/model Comparison of flow characteristics ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Physical experiments Acomen 2011 1- Experiment facility: b d c e f pipe d 150 1 pl a n v iew A A g a te d c e b - two 4.2 m long channel reaches made of clear glass 1 - a 2 m long closed conduit made of exterior type plywood - an upstream tank and a collection box - a gate made of thin steel plate - pumping and piping system, etc. f sec tio n 1-1 http://www.hach.ulg.ac.be l eg en d : y x a f eed in g pipe d c o n d uit b upstr ea m ta n k e d o w n str ea m f l ume c upstr ea m f l ume f d o w n str ea m ta n k a) Sketch of physical model b) Picture of physical model ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Physical experiments Acomen 2011 2- Water alimentation and boundary condition – Water alimentation system: 7 8 6 4 9 5 3 12 d 50 400 m3 11 1 10 2 sket c h o f w a t er a l imen t a t io n syst em – Boundary condition: http://www.hach.ulg.ac.be • Upstream boundary condition is the discharge into the model • Downstream boundary condition is a gate (used as an free-weir or a raising one) ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Physical experiments Acomen 2011 http://www.hach.ulg.ac.be 3- Measurement devices: • Using an electro magnetic (EM) probe to measure the velocity (fig a); • Using 8 ultrasound sensors to determine the water level (fig b); • Using 8 piezoresistive pressure transducers for pressure measuring (fig c); • Using an electromagnetic discharge meter to control the discharge (fig d); (a) (b) (c) ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) (d) Physical experiments Acomen 2011 4- Example of results (model A) - Velocity results with free weir, Q=10l/s h =26c m h =26c m 1 4 7 10 13 2 5 8 11 14 3 6 9 12 15 Q =10l / s u bc =320m m d bc =310m m v el o c it y a t l o c a t io n t h =16c m h =16c m 1 4 7 10 13 2 5 8 11 14 3 6 9 12 15 Q =10l / s u bc =320m m d bc =310m m v el o c it y a t l o c a t io n c h =5c m h =5c m 1 4 7 10 13 2 5 8 11 14 3 6 9 12 15 v el o c it y a t l o c a t io n b 300 250 t c b t c b t c b Section 10-11-12 200 Vx [mm/s] http://www.hach.ulg.ac.be Q =10l / s u bc =320m m d bc =310m m 150 100 B 50 C T 0 -50 0 200 400 600 800 1000 -100 -150 Y [mm] ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Physical experiments http://www.hach.ulg.ac.be – Pressure field results with free weir ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Acomen 2011 Physical experiments Acomen 2011 – Pressure field results with raising gate 9 14 10 12 15 Q=20 l/s 18 Q=42.5 l/s 16 12 Q=24 l/s 10 Q=30 l/s 8 6 Q=34.3 l/s 4 Q=40 l/s 2 0 Q=44 l/s 0 10 20 30 40 50 60 70 80 90100 Y [mm] Section 8-9-10 H/h[-] Q=20 l/s 14 H/h[-] http://www.hach.ulg.ac.be 8 18 16 14 12 10 8 6 4 2 0 Q=24 l/s Q=30 l/s Q=34.3 l/s Q=40 l/s Q=42.5 l/s Q=44 l/s 0 10 20 30 40 50 60 70 80 90100 Y [mm] ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Section 14-12-15 Numerical modeling Acomen 2011 1- Shallow water equations + Preissmann slot model: h ub vb 0 t x y Continuity equation J J z z mesh http://www.hach.ulg.ac.be z z ub u 2b uvb g (2h b)b ghb b ghr r ghJ J x t x y 2 x x x z z vb uvb v 2b g (2h b)b ghb b ghr r ghJ J y t x y 2 y y y – – – – – – u, v: Velocity components h: Pressure b: Conduit height Zb, Zr: Bottom and roof elevations hb, hr, hJ: Equivalent pressure terms Jx, Jy: Friction slope components ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Momentum equations Numerical modeling Acomen 2011 + WOLF applicability • Finite volume discretization, with multiple blocks using constant space step (accuracy and computation time) • Original FVS (WOLF – HACH), upwinding regarding the flow velocity (momentum upstream, pressure terms downstream) http://www.hach.ulg.ac.be • Bottom slope term discretized in agreement with the FVS (water at rest) • Bottom friction with Manning’s formula •Explicit RK time integration scheme with CFL number condition ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Numerical modeling 2- Example of results (model A) – Velocity field results with free weir, Q=10l/s – Velocity field results with raising gate, Q=30l/s http://www.hach.ulg.ac.be - Pressure field results with free weir, Q=10l/s - Pressure field results with raising gate, Q=30l/s ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Acomen 2011 Conclusions Acomen 2011 • Study aims at studying 2D mixed flows using - Experimental modeling - Numerical modeling • Choice of 3 configurations, tested with a wide range of steady discharges http://www.hach.ulg.ac.be • Results for comparison: Velocity and pressure distribution in two directions Mixed flows visualization in detail Comparisons under progress… • Perspectives: Perform unsteady modeling Consider the effect of air entrainment ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH) Acomen 2011 http://www.hach.ulg.ac.be Thanks For Your Attention! ArGEnCo – MS²F - Hydrologie, Hydrodynamique Appliquée et Constructions Hydrauliques (HACH)