Entanglements and stress correlations in coarsegrained molecular dynamics Alexei E. Likhtman, Sathish K. Sukumuran, Jorge Ramirez Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK [email protected].
Download ReportTranscript Entanglements and stress correlations in coarsegrained molecular dynamics Alexei E. Likhtman, Sathish K. Sukumuran, Jorge Ramirez Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK [email protected].
Entanglements and stress correlations in coarsegrained molecular dynamics Alexei E. Likhtman, Sathish K. Sukumuran, Jorge Ramirez Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK [email protected] Hierarchical modelling in polymer dynamics D f ( , ?) Dt • Constitutive equations – Tube theories Tube Model? • Single chain models The weakest link – Coarse-grained many-chains models CR Kremer-Grest MD, Padding-Briels Twentanglemets, NAPLES » Atomistic simulations > Quantum mechanics simulations Well established coarsegraining procedures, force-fields, commercial packages The missing link The ultimate goal: Stochastic equation of motion for the chain in self-consistent entanglement field Many chains system One chain model + self-consistent field Is there a tube model? Best definition of the tube model: one-dimensional Rouse chain projected onto three-dimensional random walk tube. Open questions: •Can I have expression for the tube field, please? •How to “measure” tube in MD? •Is the tube semiflexible? •Diameter = persistence length? •Branch point motion •How does the contour length changes with deformation? •Tube parameters for different polymers? •Tube parameters for different concentrations? Rubinstein-Panyukov network model Rubinstein and Panyukov, Macromolecules 2002, 6670 Construction of the model mj aj Rouse model paramet ers T temperatu re Rg coil size 2 0 element arytime New paramet ers N e - averagenumber of beads bet ween slip - links N s - st rengt hof slip - link (or effect ivenumber of monomersin t heanchoringchain) s - frict ionof slip - link along t hechain Constraint release Hua and Schieber 1998 Shanbhag, Larson, Takimoto, Doi 2001 1.0 G'/G'' S(q,t)/S(q,0) vs t (ns) (Pa vs (s )) w Diffusion 3 (Pa*s/(g/mol) ) 2 2 DMw (m /s)(g/mol) 2 -1 1E-11 -4 1.8x10 (0) GN =2.2MPa -1 q=0.077A 0.6 -4 1.2x10 by extrapolation 0.4 0.2 /M -1 q=0.05A 0.8 PE Viscosity 3 NSE -5 12.4K 24.7K 190K 6x10 1E-12 q=0.115A-1 1 10 1k 100 10k 100k 1k 10k 100k 1.0 1E-10 6 PEP 3 5 0.6 10 -1 q=0.03A -1 q=0.05A -1 q=0.068A -1 q=0.076A -1 q=0.096A -1 q=0.115A 0.4 0.2 experiments needed /Mw 10 0.8 1 4 1E-11 10 10 1 2 3 4 5 6 7 8 1k 9 10 10 10 10 10 10 10 10 10 100 10k 100k 10 experiments needed / Mw 1E-10 PI 1M -4 2x10 -4 1.5x10 6 -4 3 5 10 10 1E-11 -5 5x10 4 10 -2 -1 0 1 2 3 4 5 6 1k 10 10 10 10 10 10 10 10 10 10k 100k 1M 1k 10k 100k -5 8x10 10 6 -5 6x10 1E-9 PBd too unstable? 10 5 10 4 -5 4x10 1E-10 10 2 10 3 10 4 10 5 10 6 10 7 1k 10k 100k 1M 10M PS too slow 10-5 8x10 -5 6x10 1.5E-11 5 10k -4 2E-11 10 1k 1E-11 4x10 5E-12 2x10 -5 4 10 125K 61K 34K -5 3 100.1 1 10 100 s -1 1,000 10k 100k 1M A.E.Likhtman, Macromolecules 2005 1k 10k 100k 1M Relaxation of dilute long chains (36K) in a short matrix: constraint release 1 Mwmat 0,95 0,9 0,85 12k 6k 0,8 0,75 0,7 0,65 0,6 0,55 0,5 2k 0,45 0,4 0,35 0,3 0,25 0,2 labeled 0,15 Rouse 0,1 0,05 0,1 M.Zamponi et al, PRL 2006 1 10 t, ns 100 Molecular Dynamics -- Kremer-Grest • Polymers – Bead-FENE spring chains r U FENE (r ) ln 1 2 2 R0 kR02 2 • k = 30/2 • R0=1.5 • With excluded volume – Purely repulsive Lennard-Jones interaction between beads 1 16 U rLJ ( r ) 4 r2 r r 4 0 otherwise 12 6 Density, = 0.85 Friction coefficent, = 0.5 Time step, dt = 0.012 Temperature, T = /k K.Kremer, G. S. Grest JCP 92 5057 (1990) g1(t) from MD for N=100,350 1 1e3 g1 i, t r(i, t ) r(i,0) 2 d 1 N g1(t ) g1 i, t N i 1 g1(t) 1e2 0.5 0.5 1e1 1/4 R e 1e0 10 100 1,000 10,000 t 100,000 1.1e0 1e0 ends 9e-1 g1(i,t)/t0.5 g1(t) g1(i,t)/t0.5 from MD for N=350 8e-1 7e-1 6e-1 5e-1 4e-1 middle 3e-1 2e-1 10 100 1,000 t t 10,000 100,000 G(t) G(t) from MD for N=50,100,200,350 (Ne~50) 1e1 e 1e0 1e-1 1e-2 1e-3 V G (t ) (t ) (0) kT 1e-4 0.1 1 10 100 t 1,000 10,000 100,000 G(t) from MD for N=50,100,200,350 G(t) from MD for N=50,100,200,350 (Ne~50) (Ne~70) e 1e0 G(t ) t 1 10 100 1,000 t 10,000 100,000 g1(i,t)/t0.5 g1(i,t) -- MD vs sliplinks mapping 1:1 (N=200) 1e0 9.5e-1 9e-1 8.5e-1 8e-1 7.5e-1 7e-1 6.5e-1 6e-1 5.5e-1 5e-1 4.5e-1 4e-1 3.5e-1 3e-1 Lines - MD Points - slip-links 1 d 1 0 e 10 100 1,000 10,000 tt 100,000 G(t) -- MD vs sliplinks mapping 1:1 (N=200) chain (t ) chain (0) chain (t ) virtual (0) virtual (t ) chain (0) virtual (t ) virtual (0) 5 01 d G(t)*t1/2 1e0 Lines - MD Points - slip-links chain (t ) chain (0) chain (t ) chain (0) chain (t ) virtual (0) e 10 100 1,000 t t 10,000 100,000 Questions for discussion • Binary nature of entanglements? – Can one propose an experiment which contradicts this? • Non-linear flows: – do entanglements appear in the middle of the chain? Log(Sxy) • Is there an instability in monodisperse linear polymers? 5e0 4e0 -2 -1 0 Log(gam m a) 1 2