Tonal implications of harmonic and melodic Tn-sets Richard Parncutt University of Graz, Austria Presented at Mathematics and Computation in Music (MCM2007) Berlin, Germany, 18-20 May,
Download ReportTranscript Tonal implications of harmonic and melodic Tn-sets Richard Parncutt University of Graz, Austria Presented at Mathematics and Computation in Music (MCM2007) Berlin, Germany, 18-20 May,
Tonal implications of harmonic and melodic Tn-sets Richard Parncutt University of Graz, Austria Presented at Mathematics and Computation in Music (MCM2007) Berlin, Germany, 18-20 May, 2007 “Atonal” music is not atonal! Every… • interval • sonority • melodic fragment …has tonal implications. Exceptions: • null set (cardinality = 0) • chromatic aggregate (cardinality = 12) Finding “atonal” pc-sets • Build your own – avoid octaves and fifth/fourths – favor tritones and semitones – listening (trial and error) • Borrow from the literature Aim of this study Systematic search for pc-sets with specified – cardinality – strength of tonal implication Tn-sets of cardinality 3 Tn-set semitones 3-1 012 3-2A 013 3-2B 023 3-3A 014 3-3B 034 3-4A 015 3-4B 045 3-5A 016 3-5B 056 3-6 024 3-7A 025 3-7B 035 3-8A 026 3-8B 046 3-9 027 3-10 036 3-11A 037 3-11B 047 3-12 048 What influences tonal implications? Intervals of a Tn-set • pc-set • inversion, if not symmetrical – e.g. minor (037, 3-11A) vs major (047, 3-11B) Realisation • voicing – register – spacing – doubling …of each tone • surface parameters – duration – loudness – timbre …of each tone Perceptual profile of a Tn-set perceptual salience of each chromatic scale degree Two kinds: • harmonic profile of a simultaneity – model: pitch of complex tones (Terhardt) • tonal profile when realisation not specified – model: major, minor key profiles (Krumhansl) Harmonic profile • probability that each pitch perceived as root Parncutt (1988) chord-root model, based on • virtual pitch algorithm (Terhardt et al., 1982) • chord-root model (Terhardt, 1982) “Root is a virtual pitch” Root-support intervals Rootsupport interval weight P1, P8… P5, P12… 0 10 7 5 M3, m7, M10… m14… 4 3 M2, M9… 10 2 2 1 Estimation of root-support weights • Music-theoretic intuition – predictions of model intuitively correct? • Comparison of predictions with data – Krumhansl & Kessler (1982), Parncutt (1993) Harmonic series template poids (1/n) 1 0 40 36 32 28 24 20 16 12 8 4 0 interval (semitones) weight Octave-generalised template 10 8 6 4 2 0 0 1 2 3 4 5 6 7 8 interval class (semitones) 9 10 11 Circular representation of template 0 11 1 10 2 9 3 8 4 7 5 6 Matrix multiplication model notes x template = saliences 1 0 0 0 1 notes 0 0 template 1 0 0 0 0 saliences 18 0 3 3 10 6 2 10 3 7 1 0 Major triad 047 notes pitches 0 11 0 1 10 11 2 9 10 3 8 4 7 5 6 1 2 9 3 8 4 7 5 6 Minor triad 037 notes pitches 0 11 0 11 1 10 10 2 9 3 8 4 7 5 6 1 2 9 3 8 4 7 5 6 Diminished triad 036 notes pitches 0 11 0 1 10 11 2 9 10 3 8 4 7 5 6 1 2 9 3 8 4 7 5 6 Augmented triad 048 notes pitches 0 0 11 1 11 2 10 10 3 9 4 8 5 7 6 1 2 9 3 8 4 7 5 6 Experimental data Diamonds: mean ratings Squares: predictions Krumhansl’s key profiles Ratings for C Major 7 6 5 4 3 2 1 0 C C# D D# E F F# G G# A A# B G G# A A# B Tone Ratings for C Minor 7 6 5 4 3 2 1 0 C C# D D# E F F# Tonal profiles Probability that a tone perceived as the tonic Algorithm: • Krumhansl’s key profiles: 24 stability values • subtract 2.23 from all minimum stability = 0 • estimate probability that Tn-set is in each key (just add stability values of tones in that key) • tonal profile = weighted sum of 24 key profiles Ambiguity of a tone profile • flear peak: • flat: low ambiguity high ambiguity Algorithm: • add 12 values • divide by maximum • take square root cf. number of tones heard in a simultaneity The major and minor triads semitones 0 letter name C major triad 3-11B (047) harmonic profile 34 0 6 tonal profile 22 0 minor triad 3-11A (037) harmonic profile 29 tonal profile 14 pitch class 1 2 3 4 5 E F 6 19 11 4 19 6 13 2 0 13 5 17 10 0 22 4 13 4 9 2 4 25 0 15 0 19 15 4 2 6 7 10 12 8 11 7 14 10 8 11 8 D 6 7 8 G 9 10 A 11 B Tn-sets of cardinality 3 ah: harmonic ambiguity at: tonal ambiguity r: correlation between harmonic and tonal profiles Tn-set semitones ah at r 3-1 012 2.29 3.26 0.72 3-2A 013 2.29 3.11 0.75 3-2B 023 2.29 3.11 0.75 3-3A 014 2.20 3.13 0.75 3-3B 034 2.20 3.13 0.75 3-4A 015 2.05 2.97 0.83 3-4B 045 2.05 2.97 0.83 3-5A 016 2.05 3.08 0.73 3-5B 056 2.05 3.08 0.73 3-6 024 2.12 3.11 0.75 3-7A 025 2.05 2.95 0.85 3-7B 035 1.93 2.95 0.85 3-8A 026 2.05 3.14 0.59 3-8B 046 2.20 3.14 0.59 3-9 027 1.98 2.82 0.90 3-10 036 2.51 3.11 0.62 3-11A 037 2.05 2.95 0.84 3-11B 047 1.87 2.95 0.84 3-12 048 2.20 3.15 0.74 Musical prevalence of a Tn-set Depends on: • ambiguity • roughness (semitones, tritones…) • whether subset of a prevalent sets of greater cardinality – e.g. 036 is part of 0368