Matrices in Matlab Vlachopoulos Georgios Lecturer of Computer Science and Informatics Technological Institute of Patras, Department of Optometry, Branch of Egion Lecturer of Biostatistics Technological.
Download ReportTranscript Matrices in Matlab Vlachopoulos Georgios Lecturer of Computer Science and Informatics Technological Institute of Patras, Department of Optometry, Branch of Egion Lecturer of Biostatistics Technological.
Matrices in Matlab Vlachopoulos Georgios Lecturer of Computer Science and Informatics Technological Institute of Patras, Department of Optometry, Branch of Egion Lecturer of Biostatistics Technological Institute of Patras, Department of Physiotherapy, Branch of Egion Matlab (Matrix Laboratory) ◦ A powerful tool to handle Matrices Vlachopoulos Georgios A=[2,4,7] B=[1:1:10] C=[10:3:40] D=[30:-3:0] D1=[1:pi:100] Length(D1) D2=linspace(2,10,20) Vlachopoulos Georgios E=[1,2,3↲ 4,5,6] F=[1,2,3;4,5,6] G=[1;2;3] H=[1,2,3; 4,5] Vlachopoulos Georgios X=2; H=[x,sin(pi/4), 3,2*x; sqrt(5), x^2,log(x),4] H1=[x,sin(pi/4), 3,2*x; sqrt(5), x^2,log(x),4; linspace(1,2,4)] Vlachopoulos Georgios Special functions zeros(2,4) zeros(2,2) zeros(2) ones(2,4) ones(2,2) ones(2) eye(2,2) eye(2) eye(2,4) Vlachopoulos Georgios Special functions rand (2,4) rand(2,2) rand(2) magic(3) hilb(3) Vlachopoulos Georgios + * / \ .* ./ .\ ^ (base and exp) inv size Vlachopoulos Georgios Inner Product ◦ dot(array1,array2) Cross Product ◦ cross(array1,array2) Vlachopoulos Georgios Every polynomial corresponds to an array with elements the coefficients of the polynomial Example f1(x)=x2-5x+6f1=[1,-5,6] f2(x)=x3-5x+6f2=[1,0,-5,6] Vlachopoulos Georgios Add polynomials ◦ array1+array2 ◦ If we have different order polynomials we create equal sizes arrays adding zeros on missing coefficients Add polynomials ◦ array1-array2 ◦ If we have different order polynomials we create equal sizes arrays adding zeros on missing coefficients Multiply polynomials ◦ conv(array1,array2) Divide polynomials ◦ deconv(array1,array2) Vlachopoulos Georgios Roots of a polynomial roots(array) Polynomial with roots the elements of the array poly(array) First order derivative of the Polynomial polyder(array) Value of the Polynomial p for x=a polyval(p,a) Vlachopoulos Georgios Examples k1=root(f1) k2=root(f2) poly(k1) kder=polyder(f2) polyval(s2,5) Vlachopoulos Georgios A∪Bunion(array1,array2) A∩B intersect(array1,array2) A∼B setdiff(array1,array2) Example ◦ ◦ ◦ ◦ ◦ ◦ a=1:6 b=0:2:10 c=union(a,b) d=intersect(a,b) e1=setdiff(a,b) e2=setdiff(b,a) Vlachopoulos Georgios Unique Elements unique(array) Elements of A that are members of B ismember(array1,array2) Example ◦ ◦ ◦ ◦ f1=ismember(a,b) f2=ismember(b,a) g=[1,1,2,2,3,3] h=unique(g) Vlachopoulos Georgios Arrays ◦ Sum of array elements sum(array) ◦ Product of array elements prod(array) ◦ Cumulative sum of an array elements cumsum(array) ◦ Cumulative prod of an array elements cumprod(array) Vlachopoulos Georgios Matrices ◦ Sum of elements of each matrix column sum(matrix) or sum(matrix,1) ◦ Sum of elements of each matrix row sum(matrix,2) Overall sum???? Vlachopoulos Georgios Matrices ◦ Product of elements of each matrix column prod(matrix) or prod(matrix,1) ◦ Product of elements of each matrix row prod(matrix,2) Overall product???? Vlachopoulos Georgios Matrices ◦ Cumulative sum per column cumsum(matrix) or cumsum (matrix,1) ◦ Cumulative sum per row cumsum (matrix,2) Vlachopoulos Georgios Matrices ◦ Cumulative sum per column cumprod(matrix) or cumprod (matrix,1) ◦ Cumulative sum per row cumprod(matrix,2) Vlachopoulos Georgios Matrix element A(i,j) Example: A=[1,2,3;4,5,6] A(2,1)↲ A(2,1)=4 Vlachopoulos Georgios Example: A=[1,2,3;4,5,6;3,2,1] B=A(1:2,2,3) y=A(:,1) Z=A(1,:) W=A([2,3],[1,3]) A(:) Vlachopoulos Georgios Delete elements Example ◦ ◦ ◦ ◦ ◦ ◦ Clear all; A=magic(5) A(2,: )=[] % delete second row A(:[1,4])=[] % delete columns 1 and 4 A=magic(5) A(1:3,:)=[] % delete rows 1 to 3 Vlachopoulos Georgios Replace Elements Example ◦ ◦ ◦ ◦ ◦ Clear all; A=magic(5) A(2,3 )=5 % Replace Element (2,3) A(3,:)=[12,13,14,15,16] % replace 3rd row A([2,5]=[22,23,24,25,26; 32,33,34,35,36] Vlachopoulos Georgios Insert Elements Example ◦ ◦ ◦ ◦ Clear all; A=magic(5) A(6,:)=[1,2,3,4,5,6] A(9,:)=[11,12,13,14,15,16] Vlachopoulos Georgios