Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J.
Download ReportTranscript Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J.
Thermoelastic properties of ferropericlase R. Wentzcovitch Dept. of Chemical Engineering and Materials Science, Minnesota Supercomputing Institute J. F. Justo, C. da Silva, Z. Wu Dept. of Chemical Engineering and Materials Science T. Tsuchiya Ehime University, Japan Outline Ab initio calculations of Fe in (Mg1-xFex)O Thermodynamics of the spin transition Thermoelastic properties of (Mg1-xFex)O Geophysical implications Motivation: Earth’s Minerals Lower Mantle: Ferrosilicate Perovskite + ferropericlase Low iron concentration (< 0.20) High-temperatures and high pressures Elasticity (Mg1-xFex)O ferropericlase (Mg1-yFey)SiO3 perovskite + First Principles Calculations Density Functional Theory (LDA+U) (Cococcioni and de Gironcoli, PRB, 2005) Plane waves + Pseudopotential (Troullier-Martins, PRB, 1991, Vanderbilt, PRB, 1990) Structural relaxation in all configurations Density Functional Perturbation Theory (Baroni et al., RMP, 2001) Optimized Hubbard U 7 XFe=3.125% XFe=12.5% XFe=18.75% Hubbard U (eV) HS 6 5 LS 4 14 16 3 V (Å /molec) FeO (Cococcioni, 2005) 18 20 First Principles Calculations: HS-LS transition (Tsuchiya et al., PRL, 2006) H=HLS-HHS (kJ/mol) 40 3.125% 12.5% 18.75% 20 0 -20 0 50 100 P (GPa) PT = 32±3 GPa No systematic dependence on XFe H (kJ/ 0 Equation of State (Mg0.81Fe0.19)O -10 -20 12 B (Tsuchiya et al., PRL, 2006) 100 50 0 n=0 n=1/3 n=2/3 n=1 P (GPa) V (cm3/mol) 11 nLS n n n HS LS 10 9 C ∆V ~4% 8 0 20 40 60 80 100 P (GPa) Experimental: + (J.F.Lin et al., Nature, 2005) 17% Fe and room temperature Temperature Effects: n(P,T) (Tsuchiya et al., PRL, 2006) 1) Magnetic entropy 2) HS/LS configuration entropy 3) Fe/Mg configurational entropy is insensitive to spin state 4) Vibrational energy and entropy are insensitive to spin state 5) Minimization of G(P,T,n) with respect to n: n( P, T ) 1 H HS LS 1 m(2S 1) exp X k T Fe B LS fraction n(P,T) (Tsuchiya et al., PRL, 2006) XFe=18.75% Exp Geotherm (Boehler, RG, 2000) Elasticity of Ferropericlase Volume of the mixed spin state V(P,T,n) Mixed spin configuration was described by the Vegard’s rule: V ( P, T , n) nVLS ( P, T ) (1 n)VHS ( P, T ) where n = low spin fraction Iron-iron interaction is not significant for xFe=18.75% High temperature elasticity V ( P, T , n) nVLS ( P, T ) (1 n)VHS ( P, T ) Compressibility: VLS VHS V (n) n n (1 n) (VLS VHS ) K (n) K LS K HS P T Compliances: Sij (n)V (n) nS VLS (1 n) S VHS LS ij HS ij 1 n ij (VLS VHS ) 9 P T 11 12 1 44 0 Static +vibrational free energy VDoS and F(T,V) within the quasiharmonic approximation F (V , T ) U (V ) qj F P V T qj (V ) 2 qj (V ) k BT ln1 exp k T qj B F S T V G F TS PV IMPORTANT: crystal structure and phonon frequencies depend on volume alone!! Thermoelastic Constant Tensor Cijpure(P,T) (Wentzcovitch et al., PRL, 2004) Eulerian Strain 2 G T cij ( P, T ) i j P kl cij ( P, T ) cij ( P, T ) S equilibrium structure re-optimize T S i i T i jVT CV “Approximate” Virtual Crystal model Replace Mg mass by the average cation mass of the alloy 0.06 MgO mgo with 18.75% iron mass pure mgo 0.05 (Mg0.8125Fe0.1875)O 0.04 DoS 0.03 0.02 0.01 0.00 0 100 200 300 400 500 -1 frequency (cm ) ω(V) = ωLS(V) = ωHS(V) 600 700 Procedure to obtain Cij(P,T,n): Compute CijLS(P,T) and CijHS(P,T) SLS(P,T) = [CLS(P,T)]-1 and SHS(P,T) =[CHS(P,T)]-1 Calculate n( P, T ) 1 st vib GHS LS 1 m(2S 1) exp X k T Fe B Compute V(P,T,n) and Sij(P,T,n) C(P,T,n) = [S(P,T,n)]-1 Compute K(P,T,n) and G(P,T,n) Volume V(P,T,n(P,T)) for xFe= 18.75% xFe= 18.75% + 300K (exp.) + Experiments (Lin et al., Nature, 2005) (xFe=17%, RT) Elastic Constants (xFe= 18.75%) Isotropic Elastic Constants Experiments: ○ (Lin et al., GRL, 2006) xFe = 25% (NRIXS, RT) ● (Lin et al., Nature, 2005) xFe= 17% (X-ray diffraction, RT) □ (Kung et al., EPSL, 2002) xFe = 17% (RUS, RT) Sound Wave Velocities VP VS xFe= 18.75% Experiments: ○ (Lin et al., GRL, 2006) xFe = 25% (NRIXS, RT) □ (Kung et al., EPSL, 2002) xFe = 17% (RUS, RT) 3 K G 4 G Geophysical Implications Elasticity Along Mantle Geotherm 1150 km 1580 km Geotherm (Boehler, Rev. Geophys. 2000) -15% 6% Wave Velocities Along Mantle Geotherm 1150 km 1580 km -9% -15% 6% 3% Geotherm (Boehler, GRL,2000) Seismic Parameters (Mantle Geotherm) R / S ln V ln VS P (Karato, Karki, JGR, 2001) Geotherm (Boehler, RG, 2000) ( Wave Velocities Along Mantle Geotherm 1150 km 1580 km -9% -15% 6% 3% Geotherm (Boehler, GRL,2000) Summary HS-LS transition in (Mg1-xFex)O is well reproduced theoretically There is a strong softening in the bulk modulus across the spin transition. This effect broadens and decreases with temperature Along a lower mantle geotherm this softening is more pronounced between 45-70 GPa, i.e., 1150-1580 km The shear modulus increases monotonically in the same region Transition can produce negative values of R/s in the upper part of the lower mantle The softening will likely occur also in ferrosilicate perovskite The Si/(Mg+Fe) ratio in the lower mantle should increase from pyrolitic values because of the spin transtions in ferropericlase and ferrosilicate perovskite Acknowledgements NSF/EAR 0135533 NSF/EAR 0230319 NSF/ITR 0428774 Japan Society for the Promotion of Science (JSPS) Brazilian Agency CNPq Computations performed at the MSI-UMN