EXERCISE 6.13 6.13* The first regression shows the result of regressing LGFDHO, the logarithm of annual household expenditure on food eaten at home,
Download ReportTranscript EXERCISE 6.13 6.13* The first regression shows the result of regressing LGFDHO, the logarithm of annual household expenditure on food eaten at home,
EXERCISE 6.13 6.13* The first regression shows the result of regressing LGFDHO, the logarithm of annual household expenditure on food eaten at home, on LGEXP, the logarithm of total annual household expenditure, and LGSIZE, the logarithm of the number of persons in the household, using a sample of 868 households in the 1995 Consumer Expenditure Survey. In the second regression, LGFDHOPC, the logarithm of food expenditure per capita (FDHO/SIZE), is regressed on LGEXPPC, the logarithm of total expenditure per capita (EXP/SIZE). In the third regression LGFDHOPC is regressed on LGEXPPC and LGSIZE. 1 EXERCISE 6.13 . reg LGFDHO LGEXP LGSIZE Source | SS df MS ---------+-----------------------------Model | 138.776549 2 69.3882747 Residual | 130.219231 865 .150542464 ---------+-----------------------------Total | 268.995781 867 .310260416 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 460.92 0.0000 0.5159 0.5148 .388 -----------------------------------------------------------------------------LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003 LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ 2 EXERCISE 6.13 . reg LGFDHOPC LGEXPPC Source | SS df MS ---------+-----------------------------Model | 51.4364364 1 51.4364364 Residual | 142.293973 866 .164311747 ---------+-----------------------------Total | 193.73041 867 .223449146 Number of obs F( 1, 866) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 313.04 0.0000 0.2655 0.2647 .40535 -----------------------------------------------------------------------------LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXPPC | .376283 .0212674 17.693 0.000 .3345414 .4180246 _cons | 3.700667 .1978925 18.700 0.000 3.312262 4.089072 ------------------------------------------------------------------------------ 3 EXERCISE 6.13 . reg LGFDHOPC LGEXPPC LGSIZE Source | SS df MS ---------+-----------------------------Model | 63.5111811 2 31.7555905 Residual | 130.219229 865 .150542461 ---------+-----------------------------Total | 193.73041 867 .223449146 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 210.94 0.0000 0.3278 0.3263 .388 -----------------------------------------------------------------------------LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004 LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ 1. Explain why the second model is a restricted version of the first, stating the restriction. 2. Perform an F test of the restriction. 3. Perform a t test of the restriction. 4. Summarize your conclusions from the analysis of the regression results. 4 EXERCISE 6.13 LGFDHO 1 2 LGEXP 3 LGSIZE u The first regression is a straightforward logarithmic regression of expenditure on food consumed at home on total household expenditure and size of household. 5 EXERCISE 6.13 LGFDHO 1 2 LGEXP 3 LGSIZE u LGFDHOPC 1 2 LGEXPPC u log FDHO/ SIZE 1 2 log EXP / SIZE u The second regression is a simple regression of LGFDHOPC, defined as log FDHO/SIZE, on LGEXPPC, defined as log EXP/SIZE. 6 EXERCISE 6.13 LGFDHO 1 2 LGEXP 3 LGSIZE u LGFDHOPC 1 2 LGEXPPC u log FDHO/ SIZE 1 2 log EXP / SIZE u LGFDHO LGSIZE 1 2 ( LGEXP LGSIZE) u The logarithmic ratios have been split. 7 EXERCISE 6.13 LGFDHO 1 2 LGEXP 3 LGSIZE u LGFDHOPC 1 2 LGEXPPC u log FDHO/ SIZE 1 2 log EXP / SIZE u LGFDHO LGSIZE 1 2 ( LGEXP LGSIZE) u LGFDHO 1 2 LGEXP (1 2 ) LGSIZE u The LGSIZE terms have been brought together. 8 EXERCISE 6.13 LGFDHO 1 2 LGEXP 3 LGSIZE u LGFDHOPC 1 2 LGEXPPC u log FDHO/ SIZE 1 2 log EXP / SIZE u LGFDHO LGSIZE 1 2 ( LGEXP LGSIZE) u LGFDHO 1 2 LGEXP (1 2 ) LGSIZE u 3 1 2 Comparing this equation with that for the first regression, we see that the second specification is a restricted version of the first with the restriction 3 = 1 – 2. 9 EXERCISE 6.13 . reg LGFDHO LGEXP LGSIZE Source | SS df MS ---------+-----------------------------Model | 138.776549 2 69.3882747 Residual | 130.219231 865 .150542464 ---------+-----------------------------Total | 268.995781 867 .310260416 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 460.92 0.0000 0.5159 0.5148 .388 -----------------------------------------------------------------------------LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003 LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ LGFDHO 1 2 LGEXP 3 LGSIZE u 3 1 2 Before performing a test of the restriction, we should check whether the estimates of the elasticities in the unrestricted version appear to satisfy it. 10 EXERCISE 6.13 . reg LGFDHO LGEXP LGSIZE Source | SS df MS ---------+-----------------------------Model | 138.776549 2 69.3882747 Residual | 130.219231 865 .150542464 ---------+-----------------------------Total | 268.995781 867 .310260416 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 460.92 0.0000 0.5159 0.5148 .388 -----------------------------------------------------------------------------LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXP | .2866813 .0226824 12.639 0.000 .2421622 .3312003 LGSIZE | .4854698 .0255476 19.003 0.000 .4353272 .5356124 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ LGFDHO 1 2 LGEXP 3 LGSIZE u 3 1 2 b3 is 0.49. 1 – b2 is 0.71. The discrepancy is rather large, compared with the standard errors of the estimates. We should expect the restriction to be rejected. 11 EXERCISE 6.13 . reg LGFDHO LGEXP LGSIZE Source | SS df MS ---------+-----------------------------Model | 138.776549 2 69.3882747 Residual | 130.219231 865 .150542464 ---------+-----------------------------Total | 268.995781 867 .310260416 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 460.92 0.0000 0.5159 0.5148 .388 Number of obs F( 1, 866) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 313.04 0.0000 0.2655 0.2647 .40535 . reg LGFDHOPC LGEXPPC Source | SS df MS ---------+-----------------------------Model | 51.4364364 1 51.4364364 Residual | 142.293973 866 .164311747 ---------+-----------------------------Total | 193.73041 867 .223449146 We see that the residual sum of squares increases from 130.2 to 142.3 when we impose the restriction. 12 EXERCISE 6.13 . reg LGFDHO LGEXP LGSIZE Source | SS df MS ---------+-----------------------------Model | 138.776549 2 69.3882747 Residual | 130.219231 865 .150542464 ---------+-----------------------------Total | 268.995781 867 .310260416 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 460.92 0.0000 0.5159 0.5148 .388 Number of obs F( 1, 866) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 313.04 0.0000 0.2655 0.2647 .40535 . reg LGFDHOPC LGEXPPC Source | SS df MS ---------+-----------------------------Model | 51.4364364 1 51.4364364 Residual | 142.293973 866 .164311747 ---------+-----------------------------Total | 193.73041 867 .223449146 H0 : 3 1 2 H1 : 3 1 2 (142.3 130.2) / 1 F (1,865) 80.4 130.2 / 865 Fcrit , 0.1% (1,750) 10.9 The F statistic is far above the critical value of F(1,750) at the 0.1% level. The critical value of F(1,865) must be lower than that for F(1,750). Therefore we reject the null hypothesis and conclude that the restriction is invalid. 13 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 We will also use the t test approach to test the restriction. First we rewrite the restriction so that the right side of the definition is zero. 14 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 We define q to be equal to the left side. The restriction is now q = 0. 15 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 3 q 2 1 We express one of the coefficients in terms of q and the other coefficient. 16 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 3 q 2 1 log FDHO 1 2 log EXP q 2 1 log SIZE u We substitute for this in the regression model. 17 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 3 q 2 1 log FDHO 1 2 log EXP q 2 1 log SIZE u log FDHO log SIZE 1 2 log EXP log SIZE q log SIZE u We bring the 2 components together and take the (+1)log SIZE to the left side of the equation. 18 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 3 q 2 1 log FDHO 1 2 log EXP q 2 1 log SIZE u log FDHO log SIZE 1 2 log EXP log SIZE q log SIZE u LGFDHOPC 1 2 LGEXPPC qLGSIZE u This allows us to rewrite the model with the dependent variable the logarithm of expenditure on food per capita and the explanatory variables the logarithms of total household expenditure per capita and household size. 19 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 3 q 2 1 log FDHO 1 2 log EXP q 2 1 log SIZE u log FDHO log SIZE 1 2 log EXP log SIZE q log SIZE u LGFDHOPC 1 2 LGEXPPC qLGSIZE u Having reparameterized the model in this way, we can test the restriction with a simple t test on the coefficient of LGSIZE. 20 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 3 q 2 1 log FDHO 1 2 log EXP q 2 1 log SIZE u log FDHO log SIZE 1 2 log EXP log SIZE q log SIZE u LGFDHOPC 1 2 LGEXPPC qLGSIZE u If the coefficient of LGSIZE is significantly different from zero, we need the term and should stay with the unrestricted model. If it is not, the term could be dropped, giving us the restricted model as the appropriate specification. 21 EXERCISE 6.13 log FDHO 1 2 log EXP 3 log SIZE u 3 1 2 2 3 1 0 q 2 3 1 3 q 2 1 log FDHO 1 2 log EXP q 2 1 log SIZE u log FDHO log SIZE 1 2 log EXP log SIZE q log SIZE u LGFDHOPC 1 2 LGEXPPC qLGSIZE u H0 : q 2 3 1 0 H1 : q 2 3 1 0 Note that the null hypothesis for the t test is that the restriction is valid. This ties in with the reasoning in the previous slide. If the restriction is valid, we do not need the LGSIZE term and the restricted version is the appropriate specification. 22 EXERCISE 6.13 . reg LGFDHOPC LGEXPPC LGSIZE Source | SS df MS ---------+-----------------------------Model | 63.5111811 2 31.7555905 Residual | 130.219229 865 .150542461 ---------+-----------------------------Total | 193.73041 867 .223449146 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 210.94 0.0000 0.3278 0.3263 .388 -----------------------------------------------------------------------------LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004 LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ H0 : q 2 3 1 0 H1 : q 2 3 1 0 Here is the corresponding regression result. We find that the coefficient has a very high (negative) t statistic. The null hypothesis is rejected and again we conclude that the restriction is invalid. 23 EXERCISE 6.13 . reg LGFDHOPC LGEXPPC LGSIZE Source | SS df MS ---------+-----------------------------Model | 63.5111811 2 31.7555905 Residual | 130.219229 865 .150542461 ---------+-----------------------------Total | 193.73041 867 .223449146 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 210.94 0.0000 0.3278 0.3263 .388 -----------------------------------------------------------------------------LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004 LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ H0 : q 2 3 1 0 H1 : q 2 3 1 0 The F test and the t test approaches are of course equivalent. The F statistic, 80.4, is the square of the t statistic and the critical value of F is the square of the critical value of t. 24 EXERCISE 6.13 . reg LGFDHOPC LGEXPPC LGSIZE Source | SS df MS ---------+-----------------------------Model | 63.5111811 2 31.7555905 Residual | 130.219229 865 .150542461 ---------+-----------------------------Total | 193.73041 867 .223449146 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 210.94 0.0000 0.3278 0.3263 .388 -----------------------------------------------------------------------------LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004 LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ H0 : q 2 3 1 0 H1 : q 2 3 1 0 Should we have anticipated this outcome? The restricted version effectively controls for the size of the household. Why should the size variable have a separate effect? 25 EXERCISE 6.13 . reg LGFDHOPC LGEXPPC LGSIZE Source | SS df MS ---------+-----------------------------Model | 63.5111811 2 31.7555905 Residual | 130.219229 865 .150542461 ---------+-----------------------------Total | 193.73041 867 .223449146 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 210.94 0.0000 0.3278 0.3263 .388 -----------------------------------------------------------------------------LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004 LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ H0 : q 2 3 1 0 H1 : q 2 3 1 0 One possibility is that there are economies of scale in feeding a larger household, or perhaps less wastage. 26 EXERCISE 6.13 . reg LGFDHOPC LGEXPPC LGSIZE Source | SS df MS ---------+-----------------------------Model | 63.5111811 2 31.7555905 Residual | 130.219229 865 .150542461 ---------+-----------------------------Total | 193.73041 867 .223449146 Number of obs F( 2, 865) Prob > F R-squared Adj R-squared Root MSE = = = = = = 868 210.94 0.0000 0.3278 0.3263 .388 -----------------------------------------------------------------------------LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------LGEXPPC | .2866813 .0226824 12.639 0.000 .2421622 .3312004 LGSIZE | -.2278489 .0254412 -8.956 0.000 -.2777826 -.1779152 _cons | 4.720269 .2209996 21.359 0.000 4.286511 5.154027 ------------------------------------------------------------------------------ H0 : q 2 3 1 0 H1 : q 2 3 1 0 Another is that there may be a compositional effect, large households tending to have more children, who eat less. Perhaps we should be controlling by some notion of the number of equivalent adults, rather than the unadjusted number of people in the household. 27 Copyright Christopher Dougherty 2000–2007. This slideshow may be freely copied for personal use. 07.12.07