Transcript ppsx
Circumbinary Planets PLATO WP 112510 Photometric detection of circumbinary planets Hans Deeg (coordinator) José Manuel Almenara Stefan Dreizler Rudolf Dvorak Francesca Faedi Sascha Grziwa Nicolas Iro Petr Kabath Peter Klagyivik Maciej Konacki Willy Kley Tsevi Mazeh Aviv Ofir Jean Schneider Inst. Astrofísica Canarias, ES LAM, FR University of Goettingen, DE Univ. Vienna, AT Warwick University, GB Univ. Köln, DE Univ. Hamburg, DE ESO fellow, Chile Inst. Astrofísica Canarias, ES Nicolaus Copernicus Astron. Ctr., Torun, PL Univ. Tübingen, DE Tel Aviv University, IS University of Göttingen, DE Observatoire de Paris, FR status Nov. 2014 PLATO 2.0 WS Nº1 Circumbinary Planets Definition: Planet(s) in orbit around both binary components (P-type orbit) Star Wars 1977: Planet Tatooine Backer 1993: Timing of PSR B1620-26: Pulsar-WD binary plus low-mass object = planet? Only 10-12 yrs later accepted as CBP, 2.5Mjup, P=100y (Sigurðsson+03, Backer+ 05, Rasio 05 etc) MacCabe et al 2003: HST-NICMOS obs of Circumbinary disk of GG PLATO 2.0 WS Nº2 Known CBPs Name NASA Exoplanet Explorer, circumbinary flag =1 Disc. meth. Period Planet Semi-maj. ax. (AU) Binary Mass (Mjup) Radius (Rjup) 1.22 Period (d) Tot. Mass (Msun) V mag 0.61 9.72 1.07 13.3 HIP 63510 c Imaging > 40000 y 1168 13±7 SR 12 AB c Imaging > 45000 y 1300 13±7 23 2.5±1 191.4 1.95 21.3 PSR B1620-26 b Pulsar Timing ~ 100 y DP Leo b Eclipse Timing 28 y 8.19 6.05±0.5 0.1 0.70 17.5 NY Vir c Eclipse Timing 27 y 7.54 4.49/sini 0.1 0.60 13.3 UZ For b Eclipse Timing 16 y 5.9 6.3±1.5/sini 0.1 0.84 18.2 NN Ser c Eclipse Timing 15.3 y 5.35 7.33±0.31/sini 0.1 0.65 16.7 RR Cae b Eclipse Timing 11.9 y 5.3 4.2±0.4/sini 0.3 0.62 14.4 NY Vir b Eclipse Timing 8.2 y 3.39 2.78±0.19/sini 0.1 0.60 13.3 NN Ser d Eclipse Timing 7.9 y 3.43 2.3±0.5/sini 0.1 0.65 16.7 UZ For c Eclipse Timing 5.2 y 2.8 7.7±1.2/sini 0.1 0.84 18.2 HD 202206 c Radial Velocity 3.8 y 2.542 2.43/sini 255.9 1.17 8.08 Kepler-47 c Transit 303.1 d 0.991 < 28 0.41 7.4 1.41 15.5 Kepler-34 b Transit 288.8 d 1.0896 0.22±0.01 0.76 27.8 2.07 15 Kepler-3151 b Transit 240.5 d 0.7877 < 0.05 0.55 27.3 1.13 13.5 Kepler-16 b Transit 228.8 d 0.7048 0.333±0.016 0.75 41.1 0.85 12.0 Kepler-64 (PH1) b Transit 138.3 d 0.652 < 0.53 0.55 20.0 1.94 13.5 Kepler-35 b Transit 131.5 d 0.60347 0.127±0.02 0.73 20.7 1.70 16.0 Kepler-38 b Transit 105.6 d 0.4632 < 0.38 0.38 18.8 1.20 14.3 Kepler-413 b Transit 66.3 d 0.3553 0.21±0.07 0.39 10.1 1.36 15.6 Kepler-47 b Transit 49.5 d 0.2962 <2 0.27 7.4 1.41 15.5 Sources: Nasa exoplanet explorer, exoplanet.eu, and orig. lit. PLATO 2.0 WS Distinct populations pending on discovery method Direct Imaging P >~ 40k yr 100000 Planet Period vs Binary Period Pulsar Timing 100 yr Eclipe Planet period (d) 10000 Timing RV Transits 1000 100 10 0.01 0.1 1 10 Binary period (d) PLATO 2.0 WS 100 1000 Stability of P-type planet orbits H&W 99 P° ac unstable M2 ab M1 Dvorak+ 89 stable ab: Binary separation ac: planet minimum stable semimaj. axes m=M2/M1+M2 Holman & Wigert 99 Dvorak+ 1989, Holman & Wiegert 1999, coplanar case: ac/ab ~ 2.3 for ebin=0 , little dependency on μ Pc/Pb ~ 3.5 Non coplanar: ac varies by ±20% against coplanar case ? (on a-Cen, Wiegert & Holman 97, Chambers+ 02) Possible regions of instabilities further out: at MMR's 3:1 up to (?) 9:1 PLATO 2.0 WS Distinct populations pending on discovery method Direct Imaging P >~ 40k yr 100000 Planet Period vs Binary Period Pulsar Timing 100 yr Eclipe Planet period (d) 10000 Timing RV Transits 1000 Instable CBP orbits 100 10 0.01 0.1 1 10 Binary period (d) PLATO 2.0 WS 100 1000 CBPs discovered by timing Name PSR B1620-26 b DP Leo b NY Vir c UZ For b NN Ser c RR Cae b NY Vir b NN Ser d UZ For c Disc. meth. Pulsar Timing Eclipse Timing Eclipse Timing Eclipse Timing Eclipse Timing Eclipse Timing Eclipse Timing Eclipse Timing Eclipse Timing Orb. period 100 y Planet Semi-maj. ax. (AU) 23 Binary Mass (Mjup) 2.5±1 Radius (Rjup) Period (d) 191.4 Tot. Mass (Msun) 1.95 V mag 21.3 28 y 8.19 6.05±0.5 0.1 0.70 17.5 27 y 7.54 4.49/sini 0.1 0.60 13.3 16 y 5.9 6.3±1.5/sini 0.1 0.84 18.2 15.3 y 5.35 7.33±0.31/sin i 0.1 0.65 16.7 11.9 y 5.3 4.2±0.4/sini 0.3 0.62 14.4 8.2 y 3.39 2.78±0.19/sin i 0.1 0.60 13.3 NY 7.9 Viry Lee+ 14 3.43 5.2 y 2.8 Beuermann+ 2010 Eclipse time variation (ETV) <- light-time or Rømer effect 2.3±0.5/sini 0.1 0.65 16.7 (Not TTV-like orbital dynamics effect): EB7.7±1.2/sini is closer or further from us pending on18.2 location of planet. 0.1 0.84 All timing discoveries: On evolved stars with compact component: Pulsars, ecl. binaries dM /WD; dM/sdB. (~2500 WD/MS EB’s, most from SDSS, Rebassa-Mansergas + 12) sdB pulsations could confirm ETVs (Lee+ 14, for NY Vir) PLATO 2.0 WS ETV detections ETV detections: Post common envelope binaries, evolved from MS binaries with P ~ O(1) yr. Open questions: - Planets or other origins for ETVs? (Horner+ 14) - some 2-planet candidate-sys not stable ( HW Vir, QS Vir) -> there must be other source of ETVs - current orbit stable (NN Ser) - IF planet: - first generation? Formed with MS binary (e.g. Bear & Soker 14) - second generation? Formed from ejecta during CE phase (e.g. Horner+ 14; Schleicher & Dreizler 14 ) likely unstable likely stable from Horner+ 14 HW Vir PLATO 2.0 WS QS Vir NN Ser RV detections TATOOINE Search (Konacki+ 2009): No reported discovery Problem: RV amplitude of stellar binary components >> RV from planet One potential CBP (Correia+ 2004): Planet Name HD 202206 c Disc. meth. Radial Velocity Orb. period 3.8 y Binary Semi-maj. ax. (AU) Mass (Mjup) 2.542 2.43/sini Radius (Rjup) Period (d) Tot. Mass (Msun) V mag 255.9 1.17 8.08 A comp: 1.15 M B comp: 17 MJup/sin i : IF BD -> c is CBP, else not ! No RV wobble detected from any other known CBP. PLATO 2.0 WS y CBP detection by transit • • • Transits likely to occur on EBs if planet disks preferentially aligned with binary planeKepler 16(AB)b Kepler 16b Unique transit signal, low False Alarm prob. Details of transit depend on EB phase. x First transit-detection project ‘TEP’ in 1994 observ. of CM Dra (M4/M4 EB, Deeg+98, Doyle+2000, Deeg +08) Specific detection algorithms needed: (Doyle+ 2000, Ofir+ 2009, Kostov+ 2013) • • Removal of binary signal Detection of semi-periodic transits within ‘transit window’ (Doyle+ 2000, Armstrong+ 13) Kepler38b x- elongation (Rsol) dF/F (mmag) Doyle + 2011 (Orosz+ 12) Binary phase PLATO 2.0 WS Deeg+ 1998 Transiting CBPs with ETVs from orb. dyn. effects Kepler 16 (Doyle +11) PLATO 2.0 WS Kepler 34 Kepler 35 (Welsh +11) CBP transit detections Planet Name Disc. meth. Orb. period Kepler-47 c Transit Kepler-34 b Binary Semi-maj. ax. (AU) Mass (Mjup) Radius (Rjup) Period (d) Tot. Mass (Msun) V mag 303.1 d 0.991 < 28 0.41 7.4 1.41 15.5 Transit 288.8 d 1.0896 0.22±0.01 0.76 27.8 2.07 15 Kepler-3151 b Transit 240.5 d 0.7877 < 0.05 0.55 27.3 1.13 13.5 Kepler-16 b Transit 228.8 d 0.7048 0.333±0.016 0.75 41.1 0.85 12.0 Kepler-64 (PH1) b Transit 138.3 d 0.652 < 0.53 0.55 20.0 1.94 13.5 Kepler-35 b Transit 131.5 d 0.60347 0.127±0.02 0.73 20.7 1.70 16.0 Kepler-38 b Transit 105.6 d 0.4632 < 0.38 0.38 18.8 1.20 14.3 Kepler-413 b Transit 66.3 d 0.3553 0.21±0.07 0.39 10.1 1.36 15.6 Kepler-47 b Transit 49.5 d 0.2962 <2 0.27 7.4 1.41 15.5 Features: Periods of (inner) planets close to stability limit. All planets around binaries with > 7d period. Planets are all Uranus – Saturn like PLATO 2.0 WS CBP orbits Winn&Fabrycky 2014 PLATO 2.0 WS Period distribution of Kepler EBs, sys with CBPs morph > 0.5 (contact, semi-det.) morph ≤ 0.5 (detached) K47 K413 K34 K3151 K35 K64 K47 K16 + 235 EBs with P>50d Source: Kepler EB catalog, V3beta Nov’14 http://keplerebs.villanova.edu/ PLATO 2.0 WS Radius - period relation of the inner CBPs Transi ng CBP Radius vs Period 0.8 K 35b 0.7 K 16b K 34b Radius (Rjup) 0.6 K 64b 0.5 K 3151b 0.4 K 413b K 47c K 38b 0.3 K 47b 0.2 0 50 Source: Exoplanet.eu PLATO 2.0 100 150 200 Planet period (d) 250 300 350 Insolation of CBPs and habiltity K34b Welsh + 2012 K35b Short-term (yr) Long-term (yr) Kep-64b Welsh+ 2013 PLATO 2.0 WS CBP transits may come and go: Mutually inclined orbits Martin & Triaud 2014 PLATO 2.0 WS Kepler 3151b (KIC 9632899b) Welsh+ 2014: Mutual inclination 2.3deg: -> precession 103yr period -> transits only 8.4% ± 0.2% of the time -> 12x more such systems than currently are transiting Kepler 413b (Kostov+14) Pprec ~11yr Last transit Oct. 2012, next May 2020 Welsh+ 2014 PLATO 2.0 WS An interesting perspective: Martin & Triaud (2014): CBP transiting non-eclipsing binaries (NEB) transitability : present of transits may potentially occur PLATO 2.0 WS CBP on non-eclising binaries : Potential of transits pending on binary inclination Martin & Triaud 2014 PLATO 2.0 WS CBP on non-eclising binaries High probabilities to detect some - if waiting long enough - if strongly inclined systems exist Martin & Triaud 2014 Martin & Triaud 2014 PLATO 2.0 WS Eclipse Echos Detection of binary eclipses in planet’s reflected light. Deeg & Doyle 2011 eclipse in reflected light from planet ‘Works’ on eclipsing or non-eclipsing binaries PLATO 2.0 WS Nº22 PLATO CBP detection ~2600 EBs out of Kepler sample of ~160k stars -> ~1.5% are EBs (Kepler Eclipsing Binary Catalogue V3 (Villanova U.; Kirk+ in prep) • • • 10 CBP detected, all by transits, rather long periods 50-303d Absence of CBP on shorter-periodic binaries? Likely but not proven Several detection efforts to find shallow-transit CBPs still ongoing (Also in CoRoT data, Klagyivik & Deeg, in prep) PLATO: Long Duration fields, 2-3 yrs: ~ 267k stars 80ppm/√h First order, multiply Kepler detection rates by 1.66 -> 15-20 ‘Kepler-like’ CBP Step & Stare, 2-5 months: 106 stars Reduced detection capability for longer-periodic (p>0.2yr) CBPs. Assuming that ½ of known Kepler CBP detected in such data: -> 20-40 CBP PLATO 2.0 WS Issues for PLATO from CBP detection PLATO Input catalogue for Long Fields: Should contain all binaries (eclips. / non-eclips) with P ≤ 1yr (Halbwachs+ 2003: 13.5% of MS stars, 1d < P < 10yr) GAIA RV’s -> detect binaries Pre-launch photometric monitoring -> EBs (needed?) The case of non-eclipsing binaries: -> potential to be determined ETV detections? <- Better time-resolution (25s <-> 50s) useful? (Deeg & Tingley, in prep: No timing-precision gain as long as ≥2 pts in in/egress) Both cases: dependent on duration of long monitoring phase, 2 x 3yr <-> 1 x 6yr CBP detection algorithm for PDC <-> independent work on L1 data PLATO 2.0 WS Thank you ¡Gracias! PLATO 2.0 WS Nº26 PLATO 2.0 WS PLATO 2.0 WS