Transcript Slide 1
Question 1 2 marks Let the large number be x and the smaller number be y. Then: x y 8 1. x y 88 2. 1 2 2x 96 x 48 y 40 Therefore the ratio x : y is 48 : 40 = 6 : 5 Question 2 2 marks y 3y y 30 2 3 y 30 y 2 2 2 9y 2 900 10 y 2 900 y 2 90 A 3y 2 2 3 90 2 1 3 5 sq u n i t s Question 3 4 marks m e d ia n b 1 1 a b c 2 7 ( a s m e a n is 9 ) a c 11 27 a c 16 c a 1 0 ( ra n g e is 1 0 ) 2c 2 6 c 13 a 3 Question 4 2 marks A B 2 E 6 C D AE : ED 2:6 1: 3 Question 5 4 marks The sequence is 3, x , x 3, 2 x 6, 4 x 12, 8 x 24 80 8 x 24 80 8 x 56 x 7 The four missing numbers are 7, 10, 20, 40 The sum of these numbers is 77 Question 6 4 marks 4 3 Ratio of smaller triangle to larger triangle is 3 : 7 A rea ratios 3 : 7 9 : 49 2 A re a o f la rg e r tria n g le 49 2 5 245 9 9 A re a o f tra p e ziu m A re a o f la rg e tria n g le - a re a o f sm a lle r tria n g le 245 9 5 200 9 or 22 2 9 sq u n its Question 7 4 marks A: Pay only three quarters of the normal price! (25% discount) 1 B: Buy two – get one free! ( 3 3 3 % d i sco u n t ) C: Two for the price of four! (don’t shop here!) D: One fifth off all prices! (20% discount) E: 30% price cut (30% discount) Answer: B Question 8 6 marks AS h a d e d 4 r 2 4 A 6 r 2 r 4 r 2 4 2 3 r 4 3 4 r 2 2 4 2 4 3 r 2 2 U n sh a d e d 1 2 r 2 4 2r 3 r 3 r 4 2 r 2 2 1 4 r 2 Ratio of shaded to unshaded area 4 3 r 2 4 2 2 2 4 4 1 0 r 5 r 3 2 r 2 3:5 2 : 5 r 2 2 Question 9 6 marks 2 c 3 t 8 s 2 c 6 t 1 6 s 3 4 c 2 t 6 s 1 2 c 6 t 1 8 s 2s 10c 0 .2 s c 4 c 3 t 8 s 4 c 1 2 t 3 2 s 4 c 2 t 6 s 4 c 2 t 6s 10t 26s t 2 .6 s For third set of scales we have 3 c 4 t 3 0 .2 s 4 2 .6 s 0 .6 s 1 0 .4 s 1 1s 11 squares are needed ? Question 10 4 marks C 9 cm 15 cm A D 9 cm BC 15 12 2 2 225 144 81 9 B 12 cm A ACD 99 2 4 0 .5 c m 2 Question 11 6 marks Jill Jack The angle Jill moves through before they meet is given by 30 360 80 135 135 225 Therefore Jack moves through 225° before they meet. 30 s T Ja ck 360 72 225 453 30 144 3 48 s 302 Question 12 6 marks Splitting the regular hexagon into 6 congruent triangles as shown below A B Area of kite ABCE C F 4 6 360 4 60 2 4 0 s q u n its E D Question 13 8 marks or y x 2 6 x 1 3 x 3 13 9 2 The coordinates of the image become (-x, -y) x 3 4 2 y x 6 x 13 2 y x 3 4 2 y x 6 x 13 2 y x 6 x 13 2 13 If rotated 180° about the origin this becomes (3, 4) (-3, -4) x O y x 3 4 2 x 6x 9 4 2 x 6x 9 4 2 -13 x 6 x 13 2 y x 3 4 2 Question 14 8 marks Let the fraction of the chocolate bar that 1 Pinkie has eaten be x then Perky has eaten x 3 The remaining fractions of the chocolate bar uneaten are Pinkie Perky 1 x 1 1 x 3 When Perky has two times as much as has Pinkie we have 1 1 3 1 1 x 2 1 x x 2 2x 3 3 x 1 2 x 2 3 8 marks Question 15 Adding the following lines to the diagram so that we have pairs of congruent triangles. X C x 36 x y O y A B 2 x 2y 180 36 360 Y 2 x 2y 36 180 2 x 2y 144 x y 72 X Oˆ Y 7 2 6 marks Question 16 For the cheetah For the snail distance = speed × time tim e 80 80 8 15 24 60 60 1 150 d is ta n c e speed 8 3 0 h r/k m 1 k m /3 0 h r 15 1 30 km . 8 1 30 23 0 1 1 15 1 6 h o u rs k m /h C Question 17 10 marks The hypotenuse of the triangle is 2 2 2 2 B 2A r 8 8 2 2 2 Now consider triangle ABC and we can deduce the missing lengths AC and BC and apply Pythagoras theorem again. r 2 2 r 84 8 4r 2 4 4r r 8 2 2 8 4 8 4r C 8 2 2r B r A 2 4 8 8 4 r 8 2 2 2 2 r 2 2 1 2 Question 18 Let S 1 3 1 1 4 S S 12 3 24 5 48 8 96 13 192 1 1 1 3 1 3 4 3 21 384 34 768 1 1 2 2 3 3 5 5 8 1 6 12 12 24 24 48 48 96 96 192 192 11 1 2 3 5 4 3 6 12 24 48 1 S 4 1 1 2 3 5 1 3 12 24 48 96 192 3 2 1 3 6 3 1 12 marks 3 4 1 2 S S 1 2 3 5 8 1 6 12 24 48 96 192 2 3 5 8 11 1 2 3 6 1 2 2 4 4 8 9 6