Transcript Lesson 6-2
Lesson 5-2R Riemann Sums Objectives • Understand Riemann Sums Vocabulary • Riemann Sum – a summation of n rectangles used to estimate the area under curve; when used with a limit as n approached infinity, then the Riemann sum is the definite integral • Definite Integral – the integral evaluated at an upper limit (b) minus it evaluated at a lower limit (a); gives the area under the curve (in two dimensions) Example 2e Use sums to describe the area of the region between the graph of y = x² + 1 and the x-axis from x = 0 to x = 2. Partition [0,2] into n intervals, the width of the intervals will be (2-0)/n = 2/n. Since the function is increasing on this interval, the left-hand (inscribed) heights will be f(xi-1) and the right-hand (circumscribed) heights will be f(xi). Rectangle Inscribed Area Right -Hand Circumscribed Area 1 (2/n) f(0) (2/n) (1 + (2/n)²) (2/n) f(0+2/n) 2 (2/n) f(0+1(2/n)) (2/n) (1 + (4/n)²) (2/n) f(0+2(2/n)) 3 (2/n) f(0+2(2/n)) (2/n) (1 + (6/n)²) (2/n) f(0+3(2/n)) 4 (2/n) f(0+3(2/n)) (2/n) f(0+4(2/n)) 5 (2/n) f(0+4(2/n)) (2/n) (1 + (8/n)²) (2/n) (1 + (10/n)²) i (2/n) f(0+(i-1)(2/n)) (2/n) (1 + (2i/n)²) (2/n) f(0+(i)(2/n)) (2/n) f(0+5(2/n)) Example 3 Find the area bounded by the function f(x) = x² + 1 and the x-axis on the interval [0,2] using limits. y 5 Lim ∑Ai = Lim ∑f(xi)∆x n→∞ n→∞ ∆x = (2-0)/n = 2/n f(xi) = 1 + (2i/n)² = 1 + 4i²/n² Ai = 2/n (1 + 4i²/n²) Lim ∑ (2/n + 8i²/n³) n→∞ x 0 0 2 Lim (2/n³) ∑ (n² + 4i²) = Lim (2/n³) (n³ + 4(n³/3 + n²/2 + n/6)) n→∞ n→∞ = Lim (2 + 8/3 + 4/n + 8/6n²) = 4.67 n→∞ Riemann Sums Let f be a function that is defined on the closed interval [a,b]. If ∆ is a partition of [a,b] and ∆xi is the width of the ith interval, ci, is any point in the subinterval, then the sum Left-Edge Rectangles Midpoint Rectangles a a b b Right-Edge Rectangles a n ∑ i=1 f(ci)∆xi is called a Riemann Sum of f. Furthermore, n if exists, lim ∑ f(ci)∆xi n→∞ i=1 b The definite integral, we say f is integrable on [a,b]. ∫a f(x)dx , is the area under the curve b Definite Integral vs Riemann Sum b Area = ∫a f(x) dx i=n i=n Area = Lim ∑Ai = Lim ∑f(xi) ∆x n→∞ i=1 n→∞ i=1 ∆x = (b – a) / n 5 Area = ∫2 (3x – 8) dx a 5-2=3 xi 3i 3 Area = Lim ∑ [3(----- + 2) – 8] (---) n→∞ i=1 n n i=n [f(x)] ∆x Sigma Notation Operations: C is a constant, n is a positive integer, and ai and bi are dependent on i i=n Σ i=m i=n i=n cai = c Σ (a ± b ) = Σ a ± Σ b Σa i=m i=n i=n i i=m i i i=m i i=m i summations split across ± constants factor out Formulas: C is a constant, n is a positive integer, and ai and bi are dependent on i i=n i=n Σ1 Σ = n i=1 i=1 i=n Σ i =1 i=n Σ i=1 n(n + 1) i = ------------- = 2 c = cn n² + n ---------2 n(n + 1) ² n² (n² + 2n + 1) i³ = ----------- = --------------------2 4 i=n Σ i=1 n(n + 1)(2n + 1) 2n³ + 3n² + n i² = -------------------- = -------------------6 6 Example 4 In the following summations, simplify in terms of n. i=n 1. Σ i=1 5n (5) = 2(n² + n) ------------- + n = n² + 2n 2 i=n 2. Σ (2i + 1) = i=1 i=n 3. Σ i=1 6(2n³ + 3n² + n) 2(n² + n) (6i² - 2i) = ---------------------- - ------------- = 2n³ + 2n² 6 2 i=n 4. Σ i=1 (4i³ - 6i²) = 4(n² (n² + 2n + 1)) 6(2n³ + 3n² + n) ------------------------ - ---------------------4 6 = n4 + 2n³ + n² - 2n³ - 3n² - n = n4 - 2n² - n Example 5 Rewrite following summations as definite integrals. i=n a) Lim n→∞ Σ i =1 3i 2 3 ----n n i=n b) Lim Σ n→∞ i =1 2 3 ∫0x³ dx ∫0x² dx i=n c) Lim n→∞ Σ i =1 πi sin --n π --n i=n e) Lim n→∞ π i=n n→∞ Σ i =1 4i 2i 2 2 --1 + ---- + ---n n n Σ i =1 2i 2i 2 2 --1 + ---- + ---n n n 2 ∫0 sin(x) dx e) Lim 2i 3 2 ----n n ∫0(1 + x + x²) dx 2 ∫0(1 + 2x + x²) dx Summary & Homework • Summary: – Riemann Sums are Limits of Infinite sums – Riemann Sums give exact areas under the curve – Riemann Sums are the definite integral • Homework: – pg 390 - 393: 3, 5, 9, 17, 20, 33, 38