Transcript Slide 1
System and definitions er In harmonic trap (ideal): Dilute interacting Bosons Single particle field operators: Macroscopic occupation assumption: Homogeneous result: Dilute interacting Bosons Not an operator! an operator! Inhomogeneous (time and space): Single particle density matrix formalism: Time evolution of operator in Heisenberg Rep. Scattering theory (see ahead): Mean-field assumption – discard fluctuating part Time-Dependent GrossPitaevskii equation (TDGPE) A short review of scat. theory Eigenvalue scattering problem: Fourier Trans. Born Approx. Low k limit (“s-wave”) Indistinguishable particles… Effective potential! GPE – ground state properties Variational derivation + Energy functional 1 Smallness parameter: Interaction energy: Kinetic energy: Eint 3 n N / aho Ekin 1, 1 Weak interactions ≠ ideal gas behavior! (still small depletion, but strongly non-ideal) GPE – ground state properties TDGPE: Ansatz + normalization: TIGPE: Note: energy is not a good quantum number (nonlinear problem!) Numerical solution of TDGPE Imaginary time evolution: Vext 1 1 m z z 2 mr r 2 2 2 n (r , t ) ann (r )e E t / n t n 0 (r, t ) a00 (r)e E t / 0 Interacting ground-state Non-interacting ground-state (Mean-field repulsion causes increase in Size) Thomas-Fermi approx. Neglect kinetic term: Relaxed T.F. Excitations – Bogoliubov equations Ansatz (plug Into TDGPE): Neglect terms of order u2, v2 and uv Bogoliubov equations (“linearized GPE”): Homogeneous system (u(r) and v(r) are plane waves): Homogeneous Bogoliubov spectrum E(m) Interaction vs. Quantum Pressure m x 1 k 2 2m “healing length” k(x1) Bragg Spectroscopy k 2k p sin 2 5P3 / 2 10 o o kp (m/) 8 6 4 2 kp 0 0.0 0.5 1.0 1.5 -1 k (x ) H int M. Kozuma, et. al., PRL 82, 871 (1999). R 2 N 0 S k bk bk ) J. Stenger, et. al., PRL 82, 4569 (1999). 2.0 2.5 3.0 The Measured Excitation Spectrum (using Bragg spectroscopy) 14 /(2) (kHz) 12 10 2R -1 -1 x 8 6 4 Liquid Helium (scaled for comparison) 2 0 0 2 4 6 8 10 -1 k (mm ) 12 14 /(2) (kHz) Phonon Region 1.0 2R -1 0.5 0.0 0 1 2 -1 k (mm ) 3 Superfluidity! Landau criteria: c (k ) k Interactions – lead to superfluidity! Superfluid velocity A few mm/sec in experimental systems! Many body theory (homogeneous) Assume macroscopic occupation of S.P. Ground state: Put in assumption + keep terms of order N 02 and N 0 The number operator is conserved – can be placed in Hˆ Many body theory (homogeneous) Neglected: Bogoliubov Transform: Atomic commutation relations give: Many body theory (homogeneous) Eliminate off-diagonal third line: Convenient representation: Solution of quasi-particle amplitudes: Diagonalized Hamiltonian Energy spectrum: (again) Ground state is a highly non-trivial Superposition of all momentum states: Ground state energy: Quasi-particle physics Inverse transformation: Particle creation Particle Annihilation Low k limit Quasi-particle factors for repulsive condensates a u2 b v2 High k limit Quasi-particle physics αk s! s ??? 1 q 0 u q Don’t Forget Bosonic Enhancement! j vq n q j , n q j j 0 u q j aq nq j, n q j j 1 n q j , n q j 1 a q n q j , n q j j nq j 1, n q j s 1)vk2 suk2 vk2 Quantum depletion of S.P. ground state Evaluate the non-single-particle component of the ground state at T=0 About 1% for “standard” experiments Attractive collapse! Complex energy – unstable to excitation! Finite size can save us (cutoff in Low k’s) Experimental values: A few thousand atoms! Structure factor and Feynman relation Static structure factor (Fourier transform of the density-density correlation function) T=0 Static Structure Factor Measure of: Feynman Relation (k ) S (k ) o (k ) • Response at k • Fluctuations with wave-number k 1.0 10 x 1 0.8 8 (m/) S(k) 0.6 0.4 0.2 2 m clarge 6 x 1 k 2 2m 4 2 ceff k 0.0 0.0 0.5 1.0 1.5 -1 k (x ) 2.0 2.5 3.0 0 0.0 0.5 1.0 1.5 -1 k (x ) 2.0 2.5 3.0 Excitation Spectrum of Superfluid 4He Feynman Relation (k ) S (k ) o (k ) 1200 x 1 (k) / 2 (GHz) 1000 800 600 400 200 0 0 5 10 15 20 25 -1 k (nm ) D. G. Henshaw, Phys. Rev. 119, 9 (1960). D. G. Henshaw and A. D. B. Woods, Phys. Rev. 121, 1266 (1961). Higher order – Beliaev and Landau damping g N0 ˆ H int 2V A kq k 0 ,q k 0 q k q q kq k ) k Akq The many-body suppression factor: Akq 2uk uquk q vquk q uqvk q ) 2vk vqvk q uqvk q vquk q ) Landau Beliaev k-q k-q k k q q Damping rate Fermi golden rule: 2 g 2 N0 k A Ek Eq E k q 2 kq 2V q ) The function can be turned into a geometrical condition: cos( ) 1 -1 1 2 2 k q 2 1 1 Ek Eq ) 2kq q [x ] 2 0 -1 -2 0 1 2 3 -1 q|| [x ] 4 Damping rate q n k vk k 8na vk dq 2 Akq 2k 2 1.0 Ek Eq 2 1 Ek Eq ) 2 Excitations 2 k [8a ] 0.8 0.6 Impurities vc 0.4 0.2 0.0 0 2 4 6 -1 k [x ] 8 10 Points not covered - Inhomogeneous Bogoliubov theory - Beyond T=0 - Coherent collisions of excitations (FWM) - Hydrodynamic representation of GPE - Na3 ~ 1 – theory and experiment