Transcript Slide 1
Institute of Electronics, Bulgarian Academy of Sciences Laboratory of Nonlinear and Fiber Optics Non- paraxiality and femtosecond optics Lubomir M. Kovachev Nonlinear physics. Theory and Experiment. V 2008 Paraxial optics of a laser beam A 1 i A ...... z 2k 0 Solution in (x, y, z) space A( x, y, z ) A(k x , k y ,0) exp( i (k x2 k y2 ) / 2k0 ) exp( ik x x) exp( k y y )dk x dk y x, y Initial conditions - Gaussian beam A( x, y,0) A0 exp(( x2 y 2 ) / 2r02 );zdiff k0r02 Analytical solution for initial Gaussian beam 2 2 1 ( x y ) A( x, y, z ) A0 exp 1 iz / zdiff 2r02 1 iz / zdiff 4 2 A 2 4 16 2 0 A 1 1 z / z diff 2 2 2 ( x y ) exp 2r 2 1 z / z 0 diff 2 z=0 z=zdiff Numerical solution using FFT technique. Paraxial optics. Laser beam on 800 nm (zdiff=k0r02= 7.85 cm; r0= 100µm) A( x, y, z) F 1 A(kx , k y ,0) exp(i(kx2 k y2 ) / 2k0 ) Initial condition A( x, y,0) A0 exp(( x 2 y 2 ) / 2); z=0 z=1/3 z=2/3 z=1;zdiff=7.85 cm Phase modulated (by lens) Gaussian beam A( x, y,0) A0 ( x, y) exp(i 2d0 i ( x, y)) ( x, y) Seff ( / f )(a2 ( x2 y 2 ) a-radius of the lens, f- focus distance d0- thickness in the centrum Seff- effective area of the laser spot a=1,27 cm Seff=0.2 800 nm f=200 cm z=0 z=1/3 z=2/3 z=1=z diff Paraxial optics of a laser pulse. From ns to 200-300 ps time duration A 1 k" 2 A i A .nl..term s . 2 z 2k0 2 t Dimensionless analyze: x r x' ; y r y' 2 0 zdiff k r 2 t0 / k " zdissp z z0 z' 2 A A k0r / z0 1 i A ...... z ' t '2 2 z0 k0r 2 t0 ~ 330 fs;r ~ 1mm;k" 3 1031 sek 2 / cm,k0 7.85104 cm1 0.02 In air, gases and metal vapors t0>100-200 fs ; β<<1 - Negligible dispersion. Nonlinear paraxial optics Nonlinear paraxial equation: 2 A 2i A A A z Initial conditions: A Ax x; Ax ( x, y, z 0) exp(x2 / 2 y 2 / 2) 1) nonlinear regime near to critical γ~ 1.2 2) nonlinear regime γ=1.7 • 1) nonlinear regime near to critical γ~ 1.2 2) Nonlinear regime γ=1.7 References Non-collapsed regime of propagation of fsec pulses 1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in Air, Opt. Lett. 20, 73-75, 1995. 2. E. T. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowich, "Conical emission from self-guided femtosecond pulses", Opt. Lett, 21, 62, 1996. 3. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, "Moving focus in the propagation of ultrashort laser pulses in air", Opt. Lett., 22, 304-306, 1997. 4. L. Wöste, C. Wedekind, H. Wille, P. Rairroux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, and R. Sauerbry, "Femtosecond Atmospheric Lamp", Laser und Optoelektronik 29, 51 , 1997. 5. H. R. Lange, G. Grillon, J.F. Ripoche, M. A. Franco, B. Lamouroux, B. S. Prade, A. Mysyrowicz, E. T. Nibbering, and A. Chiron, "Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?", Opt. lett. 23, 120-122, 1998. Nonlinear pulse propagation of fsec optical pulses Three basic new experimental effects 1. Spectral, time and spatial modulation 2. Arrest of the collapse 3. Self-channeling Extension of the paraxial model for ultra short pulses and single-cycle pulses ? A 1 k" A i A .nl..term s 2 z 2k 0 2 t 2 ionization ... Expectations: Self-focusing to be compensated by plasma induced defocusing or high order nonlinear terms - Periodical fluctuation of the profile. Experiment: 1) No fluctuations - Stable profile 2) Self- guiding without ionization Arrest of the collapse and self-channeling in absence of ionization G. Méchian, C. D'Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couarion, E. Salmon, R. Sauerbrey, "Range of plasma filaments created in air by a multi-terawatt femtosecond laser", Opt. Comm. 247, 171, 2005. G. Méchian, A. Couarion, Y. -B. André, C. D'Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, A. Couarion, R. Sauerbrey, "Long range self-channeling of infrared laser pulse in air: a new propagation regime without ionization", Appl. Phys. B 79, 379, 2004. Self-Channeling of Light in Linear Regime ?? (Femtosecond pulses) C. Ruiz, J. San Roman, C. Mendez, V.Diaz, L.Plaja, I.Arias, and L.Roso, ”Observation of Spontaneous Self-Channeling of Light in Air below the Collapse Threshold”, Phys. Rev. Lett. 95, 053905, 2005. Saving the Spatio -Temporal Paraxial Model – linear and nonlinear X waves?? 1) X-waves - J0 Bessel functions – infinite energy 2) X-waves - Delta functions in (kx, ky) space. A( x, y, z) F 1 A(kx , k y ,0) exp(i(kx2 k y2 ) / 2k0 ) Experiment: 1. Self-Channeling is observed for spectrally - limited (regular) pulses 2. “Wave type” diffraction for single- cycle pulses. Something happens in FS region?? Wanted for new model to explain: 1. Relative Self -Guiding in Linear Regime. 2. “Wave type” diffraction for single - cycle pulses. Optical cycle ~2 fs ; pulses with 4-8 fs duration Three basic new nonlinear experimentally confirmed effects: 3. Spectral, time and spatial modulation 4. Arrest of the collapse 5. Self-channeling Non-paraxial model 1. L. M. Kovachev, "Optical Vortices in dispersive nonlinear Kerr-type media", Int. J. of Math. and Math. Sc. (IJMMS) 18, 949 (2004). 2. L. M. Kovachev and L. M. Ivanov, "Vortex solitons in dispersive nonlinear Kerr type media", Nonlinear Optics Applications, Editors: M. A. Karpiez, A. D. Boardman, G. I. Stegeman, Proc. of SPIE. 5949, 594907, 2005. 3. L. M. Kovachev, L. I. Pavlov, L. M. Ivanov and D. Y. Dakova, “Optical filaments and optical bullets in dispersive nonlinear media”, Journal of Russian Laser Research 27, 185- 203, 2006 4. L.M.Kovachev, “Collapse arrest and wave-guiding of femtosecond pulses”, Optics Express, Vol. 15, Issue 16, pp. 10318-10323 (August 2007). 5. L. M. Kovachev, “Beyond spatio - temporal model in the femtosecond optics”, Journal of Mod. Optics (2008), in press. Introducing the amplitude function of the electrical field E (r , t ) ˆ and the amplitude function of the Fourier presentation of the electrical field E ( r , ) E(r, t ) A(r, t ) expik0 z 0t ˆ ˆ E (r , ) exp( it ) exp ik0 z 0t A(r , 0 ) exp i 0 t The next nonlinear equation of the amplitudes is obtained: ˆ 2 ˆ 2 2 A(r , t ) 2 A(r , t ) 2ik0 k 0 A(r , t ) k () k nl () A A(r , 0 ) exp(i( 0 )t )d z Convergence of the series: I. Number of cycles; II. Media density: 1 2 " k ( ) k (0 ) (k ) ( 0 ) (k ) ( 0 ) 2 .. 2 2 2 2 ' (k 2 )' 2kk ' ;......k ' 1 / v (k 2 )" 2k ' k 'k" SVEA in laboratory coordinate frame 2 2 A A k 0 v n2 A A v v " 1 A k 0 vn2 2 2 i v n2 A k 0 A A 2 t z 2 t 2k 0 2 2 k 0 v t or 2 2 " 2 2 A A k0v n2 A A v A 1 A vk0 A k0vn2 2 i v n2 A 2 2 2 A A 2 t z 2 t 2k0 z v t 2 t 2 V. Karpman, M.Jain and N. Tzoar, D. Christodoulides and R.Joseph, N. Akhmediev and A. Ankewich, Boyd…… " 2 2 2 A A v A 1 A vk0 A k0vn2 2 i v A 2 2 2 A A 2 z 2k0 z v t 2 t 2 t SVEA in Galilean coordinate frames 3 2 2 2 A v v k" A v " 1 A A k0vn2 2 i A k0 2v A A 2 2 2 2 z ' 2 k0v t ' t ' z ' 2 t ' 2k0 Constants A A0 A"; x r x"; y r y"; z z0 z"; z' z0 z"; t t0t":t ' t0t" 2 z dis zdiffr k0r2 t0 k z0 vt0 " 2 k0 z0 ; 2 r 2 z0 2 1 k 0 r n2 A0 ; 2 2 2 ; z dif z dis ; k0 v n2 1 2 1 2 1 A0 n2 n2 A0 2 2 2 Dimensionless parameters 1. k0 z0 r 2 2 z 0 2. 2 3. zdiff / zdisp 1 4. Determine number of cycles under envelope with precise 2π Determine relation between transverse and longitudinal initial profile of the pulse Determine the relation between diffraction and dispersion length 2 1 k0 r 2 n2 A0 2 1 2 1 k 0 v k " z0 vt0 2 Nonlinear constant 2 1 2 5. 1 n2 A0 Constant connected with nonlinear addition 2 to group velocity 2 SVEA in dimensionless coordinates Laboratory 2 2 2 2 A A 2 2 A 2 A A A A A 2i 1 2 2 A A 2 t t z z t t Galilean A 2 A A 2 A 2 2 2 2 2 A 2 A A A A 2i 1 2 2 A A 2 z ' t ' z ' t ' t ' t ' z ' t ' t; z' z vt 1;..ns..and....200 300.. ps....domain 2 1;...200 300 fs....domain 2 2 1;...20 150 fs....domain Linear Amplitude equation in media with dispersion (SVEA) 2 2 2 Laboratory: A A A 2 A 2 A 2 2i A 2 1 2 t z z 2 t t 2 2 2 A A 2 A 2 2 A 2 i A 1 2 Galilean: 1 1 2 2 t ' t ' z ' t ' z ' Linear Amplitude Equation in Vacuum (VLAE) 2 1 E E(r, t ) A(r, t ) expik0 z 0t E 2 2 0 2 c t 1 A A 1 1 A i c A c t z 2k0 2k0 c 2 t 2 2 2 A A 2 A 2 A A 2 2 2i z t z t pulse beam zdiff 2 zdiff k02r4 / z0 In air 1 k0v 2k " 105 Laboratory frame ˆ AL (k x , k y , k z , t ) F A( x, y, z, t ) ˆ AG (k x , k y , k z , t ' ) F A( x, y, z ' , t ' ) ˆ 2 ˆ A A ˆ 2i 2 L k x2 k y2 2 k z2 2k z AL 2 1 1 2L 0 t t Galilean frame ˆ 2 ˆ AG AG 2 2 2 2 ˆ 2 2i k z k x k y k z AG 1 1 2 0 t t Solutions in kx ky kz space : ˆ ˆ AL (k x , k y , k z , t ) AL (k x , k y , k z ,0) exp i 1 1 2 kˆ 2 2 t 1 1 1 1 2 2 2 2 2 k z k x k y 1 k z kz ˆ ˆ AG (k x , k y , k z , t ) AG (k x , k y , k z ,0) exp i 1 1 2 1 1 1 1 where 2 2 2 2 2 ˆ k k x k y k z 2k z t Fundamental solutions of the linear SWEA 2 2 ˆ k ˆ t AL ( x, y, z, t ) F 1 AL (k x , k y , k z ,0) exp i 2 2 1 ( 1 ) 1 1 1 1 kz kz ˆ AG ( x, y, z , t ) F 1 AG (k x , k y , k z ,0) exp i 1 1 1 1 2 2 2 2 2 ˆ k k x k y k z 2k z 2 k x2 k y2 2 1k z2 t 2 1 1 Fundamental linear solutions of SVEA for media with dispersion: 2 2 ˆ k ˆ t AL ( x, y, z, t ) F 1 AL (k x , k y , k z ,0) exp i 2 2 1 ( 1 ) 1 1 1 1 kz kz 1 ˆ AG ( x, y, z , t ) F AG (k x , k y , k z ,0) exp i 1 1 1 1 2 2 2 2 k x k y 1 k z 2 1 1 2 t Fundamental solutions of VLAE for media without dispersion: AL F AG F 1 1 ˆ 0, k , k , k A L x y z 2 2 2 ˆ F exp i k / t 1 ˆA 0, k , k , k F 1 exp i k 2 kˆ 2 / 2 t L x y z z 2 2 2 2 2 ˆ k k x k y k z 2k z 1 k0v 2k " 105 Evolution of long pulses in air (linear regime, 260 ps and 43 ps) Light source form Ti:sapphire laser, waist on level e-1 : r 100m " v 1;.....t t ' z ' z k0 7.85.104 cm1; kair 31031 sec2 / cm 1) 260 ps: αδ2=1; β1=2.1X10-5 t t ' 1 ~ z' z 1 43 ps (long pulse) αδ2=6; β1=2.1X10-5 Light Bullet (330 fs) α=785; δ2=1; β1=2.1X10-5 Light Disk (33 fs) α=78,5; δ2=100; β1=2.1X10-5 Analytical solution of SVEA (when β1<<1) and VLAE for initial Gaussian LB (δ=1) (Lab coordinate) xA( x, y, z, t ) exp k 2 1 3 2 x k k /2 2 y 2 z 2 2 2 exp i k x k y k z t exp(ik x x) exp(ik y y ) exp(ik z z )dkx dky dkz . kˆz k z x A( x, y, z , t ) exp i t z 2 2 1 2 3 2 2 ˆ2 / 2 exp k k k x y z exp i k x2 k y2 kˆz2 t exp(ik x x) exp(ik y y ) exp(ikˆz ( z i ) dkx dky dkˆz . rˆ x y ( z i ) r 2iz 2 2 2 2 2 xA( x, y, z , t ) 1 2 exp i t z k r exp(k r / 2) 3 2 2 rˆ 0 1 exp i k r t sin rˆk r dkr . 2 Analytical solution of SVEA (when β1<<1) and VLAE for initial Gaussian LB (δ=1) 2 i A( x, y, z , t ) exp i t z 2rˆ 2 i 2 1 2 i t rˆ exp it irˆ erfc ˆ t r 2 2 i 2 1 2 t rˆ i t rˆ exp it irˆ erfc 2 2 rˆ r 2iz 2 2 Shaping of LB on one zdifpulse=k02r4/z0 length Gaussian shape of the solution when t=0. The surface |A(x,y=0,z; t=0) | is plotted. 785 t z 785 Deformation of the Gaussian bullet with 330 fs time duration obtained from exact solution of VLAE. The surface |A(x,y=0,z; t=785) | is plotted. The waist grows by factor sqrt(2) over normalized time-distance t=z=785, while the amplitude decreases with A=1/sqrt(2). Analytical solution of SVEA (when β1<<1) and VLAE for initial Gaussian LB (δ=1) (Galilean coordinate) xA( x, y, z , t ) exp k 2 1 3 2 x k k 2 2 2 exp i ( k z ) k x k y k z 2 y 2 2 z / 2 t exp(ik x x) exp(ik y y ) exp(ik z z )dkx dky dkz . kˆz k z Analytical solution of SVEA (when β1<<1) and VLAE for initial Gaussian LB (δ=1) (Galilean coordinate) 2 exp i t z 3 2 2 2 2 2 ˆ exp k x k y k z / 2 xA( x, y, z , t ) 1 exp i k x2 k y2 kˆz2 t exp(ik x x) exp(ik y y ) exp(ikˆz ( z t i )dkx dky dkˆz . 2 2 2 ~ r x y ( z t i ) Analytical solution of SVEA (when β1<<1) and VLAE for initial Gaussian LB (δ=1) (Galilean coordinate) 2 i A( x, y, z , t ) ~ exp i t z 2r 2 1 i 2 2 i t ~ t ~ r exp it i~ r erfc r 2 2 i 2 1 2 ~ ~ ~ t r i t r exp it ir erfc 2 2 2 2 2 ~ r x y ( z t i ) Fig. 5. Shaping of Gaussian pulse obtained from exact solution of VLAE in Galilean coordinates. The surface A(x; y = 0; z=0; t= 785) is plotted. The spot grows by factor sqrt(2) over the same normalized time t = 785 while the pulse remains initial position z = 0, as it can be expected from Galilean invariance. pulse beam zdiff 2 zdiff k02r4 / z0 Linear Amplitude equation in media with dispersion (SVEA). 2 2 2 Laboratory: A A A 2 A 2 A 2 2i A 2 1 2 t z z 2 t t 2 2 2 A A 2 A 2 2 A 2 i A 1 2 Galilean: 1 1 2 2 t ' t ' z ' t ' z ' Linear Amplitude Equation in Vacuum (VLAE). Analytical (Galilean invariant ) solution of 3D+1 Wave equation. 2 1 E E 2 2 0 E(r, t ) A(r, t ) expik0 z 0t c t 2 2 A A 2 A 2 A A 2 2 2i z t z t pulse beam zdiff 2 zdiff k02r4 / z0 In air 1 k0v 2k " 105 2. Comparison between the solutions of Wave Equation and SVEA in single-cycle regime ˆ A ( k , k , k , 0 ) L x y z 1 AL ( x, y, z , t ) F exp i k x2 k y2 (k z ) 2 t 1 ˆ F AL ( k r ,0) expi k r t kr k x2 k y2 k z2 Evolution of Gaussian amplitudude envelope of the electrical field in dynamics of wave equation. Single – cycle regime 1 2E E 2 0 2 c t E x0 ( x, y, z , t 0) Ax0 ( x, y, z ) exp(2iz ) Ax0 ( x, y, z ) exp(( x 2 y 2 z 2 / 2)) Ax ( x, y, z, t ) ˆ (k , k , k ,0) E x y z xEx ( x, y, z, t ) F 1 exp i k x2 k y2 k z2 t F 1 Eˆ (k ,0) expi k t x r r T=0 t=3Pi Ax ( x, y, z, t ) Analytical solution of SVEA (when β1<<1) and VLAE for initial Gaussian LB in single-cycle regime (δ=1 and α=2). 2 i A( x, y , z , t ) ex p i t z 2rˆ 2 i 2 1 2 i t rˆ ex p it irˆ erfc ˆ t r 2 2 i 2 1 2 ˆ t r i t rˆ ex p it irˆ erfc 2 2 Conclusion (linear regime) 1. Fundamental solutions k space of SVEA and VLAE are obtained 2. Analytical non-paraxial solution for initial Gaussian LB. 3. Relative Self Guiding for LB and LD (α>>1) in linear regime. 4. “Wave type” diffraction for single - cycle pulses (α~1-3) . 5. New formula for diffraction length of optical pulses is confirmed from analytical solution zdifpulse=k02W4/z0 Nonlinear paraxial optics Nonlinear paraxial equation: 2 A 2i A A A z Initial conditions: A Ax x; Ax ( x, y, z 0) exp(x2 / 2 y 2 / 2) 1) nonlinear regime near to critical γ~ 1.2 2) nonlinear regime γ=1.7 1) nonlinear regime near to critical γ~ 1.2 2) Nonlinear regime γ=1.7 Nonlinear non-parxial regime. Laboratory frames 2 2 2 2 A 2 A A A A 2 2 A A 2i t z z t Galilean 2 2 2 2 A 2 A A A A 2i A 2 2 t ' t ' t ' z ' Dynamics of long optical pulses governed 2 by the non - paraxial equation r 2 2 Nonlinear regime γ=2 z0 (x,y plane) of long Gaussian pulse. Regime similar to laser beam. 1 ; 81 Dynamics of long optical pulses governed by the non - paraxial equation Nonlinear regime γ=2 2 r2 1 ; 2 z0 81 Longitudinal x, z plane of the same long Gaussian pulse. Large longitudinal spatial and spectral modulation of the pulse is observed. 1/ Optical bullet in nonlinear regime γ=1.4. Arrest of the collapse. 2 1; 2/ OPTICAL DISK in nonlinear regime γ=2.25 NONLINEAR WAVEGUIDING. Conclusion - Nonlinear regime 1/ Long optical pulse: The self-focusing regime is similar to the regime of laser beam and the collapse distance is equal to that of a cw wave. The new result here is that in this regime it is possible to obtain longitudinal spatial modulation and spectral enlargement of long pulse. 2/ Light bullet: We observe significant enlargement of the collapse distance (collapse arrest) and weak self-focusing near the critical power without pedestal. 3/ Optical pulse with small longitudinal and large transverse size (light disk): nonlinear wave-guiding. Something happens in FS region?? Wanted for new model to explain: √ 1. Relative Self Guiding in Linear Regime of light disk. √ 2. “Wave type” diffraction for single - cycle pulses. Three basic new nonlinear effects: √ 3. Spectral, time and spatial modulation of long pulse √ 4. Arrest of the collapse of light bullets √ 5. Self-channeling of light disk Експеримент - 800 nm: Ti-Sapphire laser 30 fs; 100 μm – леща: Мощност- 1.109 W пикова мощност на импулса 1X1013 W/cm2 ~2-3 Pkr H. Hasegawa, L.I. Pavlov, .... z=0 z=12 zdiff