Transcript 슬라이드 1
INTRODUCTION • What is Heat Transfer ? • Continuum Hypothesis • Local Thermodynamic Equilibrium • Conduction • Radiation • Convection • Energy Conservation WHAT IS HEAT ? In a solid body Crystal : a three-dimensional periodic array of atoms Oscillation of atoms about their various positions of equilibrium (lattice vibration): The body possesses heat. Conductors: free electrons ↔ Dielectics Vibration of crystals with an atom Longitudinal polarization vs. Transverse polarization us-1 us-1 s-1 us+1 us s s+1 s+2 us+2 us+3 s+3 The energy of the oscillatory motions: the heat-energy of the body More vigorous oscillations: the increase in temperature of the body us us+1 us+2 In a gas The storage of thermal energy: molecular translation, vibration and rotation change in the electronic state intermolecular bond energy Energy average kinetic energy electronic state 2 dissociation energy for state 2 vibrational state electronic state 1 dissociation energy for state 1 rotational state Internuclear separation distance (diatomic molecule) 1 3 2 Eu mum k BT 2 2 kB = 1.3807 × 10-23 J/K at T = 300 K, air M = 28.97 kg/kmol 2 1/ 2 um = 468.0 m/s HEAT TRANSFER Heat transfer is the study of thermal energy transport within a medium or among neighboring media by • Molecular interaction: conduction • Fluid motion: convection • Electromagnetic wave: radiation resulting from a spatial variation in temperature. Energy carriers: molecule, atom, electron, ion, phonon (lattice vibration), photon (electromagnetic wave) CONTINUUM HYPOTHESIS m lim Ex) density V V V m microscopic uncertainty V 0 macroscopic uncertainty local value of density V0 10 mm 9 3 V (3×107 molecules at sea level, 15°C, 1atm) • microscopic uncertainty due to molecular random motion • macroscopic uncertainty due to the variation associated with spatial distribution of density In continuum, velocity and temperature vary smoothly. → differentiable Mean free path of air at STP (20°C, 1atm) 2 1/ 2 lm = 66 nm, um 468.0 m/s bulk motion vs molecular random motion LOCAL THERMODYNAMIC EQUILIBRIUM hot wall at Th L gas cold wall at Tc a) lm << L : normal pressure b) lm ~ L : rarefied pressure c) lm >> L CONDUCTION Gases and Liquids • Due to interactions of atomic or molecular activities • Net transfer of energy by random molecular motion • Molecular random motion→ diffusion • Transfer by collision of random molecular motion Solids • Due to lattice waves induced by atomic motion • In non-conductors (dielectrics): exclusively by lattice waves • In conductors: translational motion of free electrons as well Fourier’s Law Th Qx T Th Tc T Qx t A [J] x x Tc T T Qx k heat flux qx x x A t A [J/(m2s) = W/m2] k: thermal conductivity [W/m·K] T As x → 0, qx k x Notation Q : amount of heat transfer [J] Q q : heat transfer rate [W], q t q : heat transfer rate per unit area [W/m2] Q q A t q : heat transfer rate per unit length [W/m] Q q L t q qA qL Heat Flux z qz qx x vector quantity q qy y T ˆ qy q j k , y q qx iˆ qy ˆj qz kˆ T ˆ qx q i k x T ˆ qz q k k z T ˆ T ˆ T ˆ j q k i k kT y z x Ex) T ( x , y ) x y (0 x 1, 0 y 1) y 1 q T = constant line or surface: isothermal T 1.5 lines or surfaces (isotherms) T 1 T 0.5 1 x T ˆ T i q kT k y x qiˆ q ˆj kiˆ kjˆ x y qx k , qy k ˆj k iˆ ˆj • temperature : driving potential of heat flow • heat flux : normal to isotherms along the surface of T(x, y, z) = constant ds T(x, y, z) = constant T ˆ T ˆ T ˆ T i j k x y z T T T dx dy dz 0 dT x y z q kT T ds 0 q ds 0 ds dxiˆ dyjˆ dzkˆ Steady-State One Dimensional Conduction T = T(x) only qx qx qx x x x x steady-state qx qx qx qx 0 dT qx k dx dqx 2 x O x qx qx qx dx dT d dT 2 x k k x O dx dx dx d dT 2 0 qx k x O x dx dx or d dT k O x 0 dx dx d dT k 0 As x → 0, dx dx d 2T When k = const., 0 2 dx RADIATION Thermal Radiation 10-2 m 10-1 m 1m 0.4 0.7 ultra violet visible 10 m infrared thermal radiation 102 m 103 m Characteristics of Thermal Radiation 1. Independence of existence and temperature of medium Ex) ice lens ice lens black carbon paper 2. Acting at a distance Ex) sky radiation • electromagnetic wave or photon • photon mean free path • ballistic transport diffusion • volume or integral phenomena conduction • fluid: molecular random motion • solid: lattice vibration (phonon) free electron diffusion or differential phenomena as long as continuum holds 3. Spectral and Directional Dependence • quanta • history of path Blackbody spectral emissive power surface emission Two Points of View 1. Electromagnetic wave • Maxwell’s electromagnetic theory • Useful for interaction between radiation and matter 2. Photons • Planck’s quantum theory • Useful for the prediction of spectral properties of absorbing, emitting medium Radiating Medium • Transparent medium ex: air • Participating medium emitting, absorbing and scattering ex: CO2, H2O • Opaque material Stefan-Boltzmann’s law • Blackbody: a perfect absorber • Blackbody emissive power Eb qb,e T 4 [W/m2 ] 5.6696 108 W/m2 K 4 Stefan by experiment (1879): Eb ~ T 4 Boltzmann by theory (1884): Eb T 4 Planck’s law (The Theory of Heat Radiation, Max Planck, 1901) spectral distribution of hemispherical emissive power of a blackbody in vacuum 2 C1 E l b 5 C / lT l e 2 1 C1 hC , C 2 hC0 / k 2 0 C0: speed of light in vacuum: 2.9979×108 m/s h: Planck constant: 6.6260755×10-34 J•s k: Boltzmann constant: 1.380658×10-23 J/K El,b (W/m2.mm) Eb 0 E l ,b d l 0 l 5 2 C1 dl C 2 / lT e 1 T4 For a real surface, Wavelength, l (mm) Blackbody spectral emissive power E T 4 : emissivity Surface Radiation Ray-tracing method vs Net-radiation method G J G: irradiation [W/m2] J: radiosity [W/m2] J T G , : reflectivity 4 q diffuse-gray surface at T q J G 4 q T G G T 1 G 4 1, : absorptivity 4 q T G Kirchihoff’s law q J G J T 4 G q J 1 1 J T 4 T J 4 J J T 1 1 4 4 T J G T4 q T 4 G T 4 G T G 4 q diffuse-gray surface at T J T G 1 G J T 4 4 4 q T J T 4 4 4 T J T T J 1 1 4 Ex) a body in an enclosure q1 q1 T2, 2, A2 T1, 1, A1 [W] A1 1 1 1 A2 2 1 A1 4 4 1, q1 1 A1 T1 T2 when A2 Tsur q Ts, , , A A1 T14 T24 4 Tsur q AT AT 4 q A Ts4 Tsur 4 s 4 sur Surrounding can be regarded as a blackbody. A1 T 4 sur 4 q1 Tsur A1 T 4 sur q1 q2 A2 4 q2 Tsur A2 Why is the irradiation on the small object the 4 same as Tsur ? q1 q2 4 Tsur A1 A2 4 q1 Tsur A1 4 q2 Tsur A1 F12 F: view factor F11 F12 1 F21 F22 1 F22 0 F21 1 A2 Reciprocity: A1F12 A2 F21 A2 F12 A1 A2 4 4 4 q2 Tsur A1F12 Tsur A1 Tsur A2 A1 CONVECTION energy transfer due to bulk or macroscopic motion of fluid bulk motion: large number of molecules moving collectively • convection: random molecular motion + bulk motion • advection: bulk motion only U ,T y u T Ts x solid wall • hydrodynamic (or velocity) boundary layer • thermal (or temperature) boundary layer at y = 0, velocity is zero: heat transfer only by molecular random motion U ,T u y T kf ks Ts solid wall When radiation is negligible, nˆ kf ks T n T n T T qs k f ks n n h Ts T h : convection heat transfer coefficient [W/m2.K] Newton’s Law of Cooling x u ,T qconv Ts qcond qcond qconv u ,T T T Ts T qs k f h Ts T n Ts Convection Heat Transfer Coefficient ks T T h Ts T n Ts T n kf not a property: depends on geometry and fluid dynamics • forced convection • free (natural) convection • external flow • Internal flow • laminar flow • turbulent flow ENERGY CONSERVATION First law of thermodynamics • control volume (open system) • material volume (closed system) control volume Ein Eg , Est Eout Ein Eg Eout Est In a time interval t: Ein Eg Eout Est steady-state: Est 0 Ein Eg Eout 0 Surface Energy Balance Ein sur. Ex) Ts Tsur T0 qcond,s Ein Eout Eout f qcond, nˆ nd,s qcond , f qrad qco qrad qconv T T ks k f qrad n n qrad T 4 h Ts T Ts4 Tsur Example 1.2 air T 25 C h 15 W/m 2 K q E L Ts = 200 C = 0.8 D 70mm G Tsur = 25 C Find: 1) Surface emissive power E and irradiation G 2) Pipe heat loss per unit length, q Assumptions: 1) Steady-state conditions 2) Radiation exchange between the pipe and the room is between a small surface in a much larger enclosure. 3) Surface emissivity = absorptivity air q T 25 C h 15 W/m 2 K E L Ts = 200 C = 0.8 D 70mm Tsur = 25 C G 1. Surface emissive power and irradiation E Ts4 0.8(5.67 108 W/m 2 K 4 )(473 K)4 2, 270 W/m 2 4 5.67 108 W/m 2 K 4 (298 K)4 447 W/m 2 G Tsur air T 25 C h 15 W/m 2 K q E L Ts = 200 C = 0.8 D 70mm Tsur = 25 C G 2. Heat loss from the pipe 4 qloss qconv qrad hA Ts T A Ts4 Tsur 4 h DL Ts T DL Ts4 Tsur q A DL qloss 15 W/m 2 K 0.07 m 200 25 C L + 0.8 0.07m 5.67 10-8 W/m 2 K 4 4734 2984 K 4 577 W/m 421 W/m 998 W/m Example 1.2 air T 25 C h 15 W/m 2 K q E L Ts = 200 C = 0.8 D 70mm Tsur = 25 C G qloss qconv qrad Q: Why not qloss qconv qrad qcond ? Conduction does not take place ? Ts = 200 C T Ts = 0.8 air qcond,s T 25 C h 15 W/m 2 K T r qcond,f qrad Tsur = 25 C qcond,f qcond,s qrad qloss dT dT 4 4 ks k f Ts Tsur dr s dr f 4 h Ts T Ts4 Tsur qra d , qloss qconv qconv qcond,f Example 1.4 Hydrogen-air Proton Exchange Membrane (PEM) fuel cell Three-layer membrane electrode assembly (MEA) Anode: (exothermic) 2H2 4H+ 4e Tc Tsat + Cathode: O2 4e 4H 2H2O 56.4 C T Tsur 25 C 0.88 P I Ec 15 [A] 0.6 [V]=9 [W] 2H2 O2 2H2O Role of electrolytic membrane 1. transfer hydrogen ions 2. serve as a barrier to electron transfer Membrane needs a moist state to conduct ions. Liquid water in cathode: block oxygen from reaching cathode reaction site → need to control Tc The convection heat coefficient, h h 10.9 W s0.8 / m 2.8 K V 0.8 Find: The required cooling air velocity, V, needed to maintain steady state operation at Tc = 56.4ºC. h 10.9 W s0.8 / m2.8 K V 0.8 Eg 11.25 W Assumptions: 1) Steady-state conditions 2) Negligible temperature variations within the fuel cell 3) Large surroundings 4) Insulated edge of fuel cell 5) Negligible energy flux by the gas or liquid flows Energy balance on the fuel cell Ein Eg Eout Est Eg Eout qconv qrad Eg 11.25 W qconv qrad qconv hA Tc T qconv Eg qrad 4 qrad A Tc4 Tsur 4 hA Tc T E g A Tc4 Tsur h 10.9 W s0.8 / m2.8 K V 0.8 4 Eg A Tc4 Tsur A Tc T V 9.4 m/s Example 1.5 section A-A A A k cubical cavity ice of mass M at the fusion temperature Tf 0 C T1 Tf L W T1 Tf Tf 0 C Find: Expression for time needed to melt the ice, tm Assumptions: 1) Inner surface of wall is at Tf through the process. 2) Constant properties 3) Steady-states, 1-D conduction through each wall 4) Conduction area of one wall = W 2 ( L W ) section A-A Tf Ein Eg Eout Est k M Ein Est Est E in Ein qcond t m T1 Tf Est Mhsf L qcond kA hsf : latent heat of fusion T1 T f L T Tf 2 1 6kW L tm k 6W t m Mhsf Mhsf L 6kW 2 T1 T f 2 T1 T f L Example 1.7 Tsur 30 C Glamp 2000 W/m 2 air T 20 C 2 h 200 W/m 2 K T ? Coating to be cured 0.8, 0.5 k 1.2 W/ m K Find: 1) Cure temperature T for h 15W/m2 K 2) Effect of air flow on the cure temperature for 2 h 200 W/m2 K Value of h for which the cure temperature is 50°C. Assumptions: 1) Steady-state conditions 2) Negligible heat loss from back surface of plate 3) Plate is very thin and a small object in large surroundings, coating absorptivity 0.5 w.r.t. irradiation from the surroundings Tsur 30 C air T 20 C 2 h 200 W/m 2 K qconv Glamp 2000 W/m 2 qrad Glamp coating 0.8, 0.5 T ? qcond k 1.2 W/ m K Ein Eg Eout Est Ein Eout Ein Glamp 4 qrad qcond h T T T 4 Tsur Eout qconv 4 Glamp h T T T 4 Tsur h 15 W/m 2 K T 377 K 104 C 2 h 200 W/m 2 K h(T 50 C) = 51.0 W/m 2 Tsur 30 C y T air T 20 C 2 h 200 W/m 2 K T ? Glamp 2000 W/m 2 Coating to be cured 0.8, 0.5 Tk 1.2 W/ m K Ein Eout , Ein Glamp dT 4 4 qrad k f Eout qcond,f T Tsur dy f dT 4 4 h T T T Tsur k s qcond,s dy s qrad q conv 0? WHY HEAT TRANSFER ? Natural System Environment Energy Conversion BioSystem Heat Transfer Electrical & Electronics Sensors & Actuators Process Manufac -turing Natural System / Temperature Distribution in the Earth