Transcript Document
Holding Computations of Conical Intersections to a Gold Standard The Laser Spectroscopy Facility Department of Chemistry Conical Intersections in Chemistry M. A. Robb and co-workers. CONICAL INTERSECTIONS The Electronic Hamiltonian Near the Conical Intersection in (φ1, φ2) Basis 1 0 cos sin H Q H Q R Q 0 1 sin cos with H Q 1 H 11 H 22 ; H Q 1 H 11 H 22 2 2 R Q H H 2 2 12 12 Q cos 1 H R sin 1 H 12 R General Eigenpairs E Q H R cos 2 1 sin 2 2 sin 2 1 cos 2 2 The Jahn-Teller Conical Intersection H 11 Q H 22 Q e H e Q e H 12 Q H * 21 Q e H e Q e e H e Q e * where e ea i eb , Q Qa iQb with ea and eb real, electronic eigenfunctions calculable by standard quantum chemistry programs For the Jahn-Teller casea, E Q e H e Q e e H e Q e and Q 2 a U. Höper, P. Botschwina, H. Köppel, J. Chem. Phys. 112, 4132 (2000). Power Series Expansions of matrix elements over p linear Jahn-Teller modes, and s quadratic Jahn-Teller active modes p e H e e i 1 1 i Qi ,r 2 r , 3 N 62 p 2 1 i Qi ,r e H h e 2 i 1 p e H e e i 1 r , s i 1 s i 1 p i 1 2 ki Qi ,r r , 2 1 gii Qi ,r 2 s j 1 r , r , 1 gij Qi ,r Q j ,r 2 3 N 6 2 p j 1 1 bij Qi ,r Q j 2 e H l H q H CQ H B e Relation to PES Derivatives Vˆ ki E E Q i , 0 2Vˆ Bij E Q Q j , i 2Vˆ i E E Qi , Qi , 0 2Vˆ gij E E Q Q i , j , 0 E 0 Typical Spectroscopic Hamiltonian H H h Hl H q where HCQ H B has been neglected and spin-orbit coupling,H SO , added as necessary Connecting the Jahn-Teller Parameters and the PES e ,i Di Ki 1 2 i 2 c 1 k i2 2 i 3 2 g ii a e Linear J-T coupling constant of mode i Quadratic J-T coupling constant of mode i i Spin-orbit coupling parameter (cm-1) with i D i e ,i J-T stabilization energy due to mode i 1 2 total i iB i Equilibrium vibrational frequency (cm-1) of mode i iB 2 Di e,i K i Total J-T stabilization energy Barrier to pseudorotation Vibronic Eigenvalues and Eigenfunction Solution of e H e T E e H e n 0 e H e T E n e H e Vibronic Eigenvalues and Eigenfunction Solution of e H e T E e H e n 0 e H e T E n e H e If H SO is neglected and T is set to zero, then one achieves the usual Jahn-Teller PES, U , where M r M 1 2 1 2 2 U i Q i i i [ki i gii i cos(ni )] i M r 1 2 i 1 2 Cross-Sections of Potential Surface H h H h +H +H l +H l+H SO +H +H SO +H q l +H q +H SO l Quantities Calculated on the Potential Energy Surface E0, X0 xd εtotal E0, X0 Emin, Xmin xd Qi, etc. εtotal, εB Emin, Xmin εB energy and geometry at the symmetric point energy and geometry at the distorted minimum distortion vector normal coordinates and first derivatives at X0 Jahn-Teller stabilization energy and barrier to pseudorotation Computational methods Value Method e,i, i Qi X0, E0, xd (I) Generalized Restricted Hartree-Fock (GRHF) calculation at the symmetric point Xmin,Emin, xd(II), total (I) total (II) CASSCF conical intersection calculation at the symmetric point CASSCF calculation at the distorted minimum E0 - Emin f [x i i i i d ( II ), e,i ] Jahn-Teller Active Molecules •Linear Jahn – Teller coupling - h(ωe)+ l (D) •Quadratic Jahn – Teller coupling - q (K) •Spin-orbit coupling - SO (aξe) •Quantizing the nuclear moton - T •Multi-mode effects – Di, Ki, ωei Jahn-Teller Active Radicals Methoxy Family Metal Monomethyl Family CX3Y X = H or F Y = O or S ~ X 2E (C3V) M-CH3 M = Mg, Ca, Zn, Cd Cyclopentadienyl Radicals Benzene Cations C5X5 C6X3Y3+ X = H or D X = H or F, Cl, Br Y = H or F, Cl, Br ~ X ~2E1g (D6h) or X 2E" (D3h) ~ X 2E"1 (D5h) ~ A 2E (C3V) PES, REMPI, ZEKE SPECTROSCOPY ZEKE PES h2 h h REMPI h1 (T ~ 300 K) (T ~ 10 K) (a) (b) Experimentally Characterizing the Jahn-Teller, Spin-Vibronic Structure 2 3 1 5 1 3 ~ A 2A1 1 6 0 0 ~ ~ - 615 1 + 61 - 51 61 + 61 - ~2 X E 61 + 00 - 00 j = 1/2 j = 3/2 Brief History of Studies of Jahn-Teller Effect in Cyclopentadienyl Experimental Spectroscopy Ab Initio Theory (stabilization energy in cm-1) Thrush, 1956 Liehr, 1956 (560) Liebling & McConnell, 1965 Snyder, 1960 (728) Carrington, et al., 1965 Hobey & McLachlan, 1960 (495) Porter & Ward, 1968 Borden & Davidson, 1979 (2484) Englman & Ramsey, 1970 Meyer, et al., 1979 (5072) Purins & Feeley, 1973 Bearpark, Robb, & Yamamoto, 1999 (2147) Engelking & Lineberger, 1977 Cunha & Canuto, 1999 (1614) Nelson, et al., 1983 Kiefer, et al., 2001 (1655) Yu, et al., 1988, 1993 Zilberg & Hass, 2002 (2554) Bernstein, et al., 1995, 1999 Molecular Orbitals involved in Jahn-Teller Distortion of C5H5 C2v Diene Allyl Distortion Distortion D5h C2v Pseudorotation around the C5H5 PES E Ra Rb Ra E Rb C5H5 E2' Vibrational Mode 12 (815) 11 (1058) 10 (1411) 9 (3030) C5H5 A1 Vibrational Mode 1 (3060) 2 (1098) Experimentally Characterizing the Jahn-Teller, Spin-Vibronic Structure 2 3 1 5 1 3 ~ A 2A1 1 6 0 0 ~ ~ - 615 1 + 61 - 51 61 + 61 - ~2 X E 61 + 00 - 00 j = 1/2 j = 3/2 Cyclopentadienyl Excitation Spectrum C5H5 C5D5 C5H5 Emission from 111 Experimental 21 Ab initio fundamentals and overtones Fit fundamentals and overtones j=1/2 nj 1 j=3/2 nj 1 82 71 2 2 3 4 5 3 22 6 7 4 8 5 9 6 10 7 11 12 8 9 10 11 Ab initio Jahn-Teller Fit Jahn-Teller Simulation Experimental 0 500 1000 1500 -1 E (cm ) 2000 2500 C5H5 Emission from Origin Experimental 82 Ab initio fundamentals and overtones 131141 142 21 3 1 42 3 4 132 22 Fit fundamentals and overtones j=1/2 nj 1 2 5 6 7 8 9 10 11 12 Ab initio Jahn-Teller Fit Jahn-Teller Simulation Experimental 0 500 1000 1500 -1 E (cm ) 2000 2500 C5H5 Emission from 121 Experimental Ab initio fundamentals and overtones 132 82 142 21 Fit fundamentals and overtones j=1/2 nj 1 j=3/2 nj 1 2 3 2 4 5 3 6 7 4 8 5 9 6 10 7 11 12 8 9 10 11 Ab initio Jahn-Teller Fit Jahn-Teller Simulation Experimental 0 500 1000 1500 -1 E (cm ) 2000 2500 C5D5 Emission From Origin Experimental Ab initio fundamentals and overtones 82 2142 42 142 21 44 132 2 18 2 84 22 Fit fundamentals and overtones j=1/2 nj 1 2 3 4 5 6 Ab initio Jahn-Teller Fit Jahn-Teller Simulation Experimental 0 500 1000 1500 -1 E (cm ) 2000 2500 Jahn-Teller Parameters C5H5 calculated experimental GRHF CASSCF (minimum) CASSCF (intersection) mode ωi Di ρimin εi ωi Di ρimin εi Di ρimin εi 9 - - - - 3030 <0.01 <0.01 <1 <0.01 <0.01 <1 10 1320 0.36 0.14 477 1411 0.68 0.18 959 0.98 0.26 1387 11 1041 0.57 0.19 594 1058 0.34 0.15 360 0.48 0.18 509 12 872 0.19 0.12 166 815 0.19 0.13 155 0.30 0.16 245 εtotal 1237 1474 2147 C5D5 experimental calculated GRHF CASSCF (minimum) CASSCF (intersection) mode ωi Di ρimin εi ωi Di ρimin εi Di ρimin εi 9 - - - - 2237 <0.01 <0.01 <1 <0.01 <0.01 <1 10 1353 0.63 0.18 852 1378 0.87 0.21 1199 1.24 0.25 1719 11 861 0.39 0.17 336 836 0.36 0.17 301 0.51 0.20 431 12 - - - - 716 <0.01 <0.01 <1 <0.01 <0.01 4 εtotal 1188 1500 2147 Cyclopentadienyl Geometric Distortion k= 0 -1 1 -2 S k S 0 2 4k 5 S cos ΔS (Å/rad.) Symmetry coordinate C5H5 exp C5D5 C5(H/D)5 calc C-C-C bend 0.012 0.0093 0.0080 C-C stretch 0.059 0.059 0.066 C-C-H bend 0.022 0.013 0.020 C-H stretch <0.001 ~ ~ <0.001 ~ <0.001 Benzene Cation Experimental Results C6F6+, C6H3F3+ LIF jet-cooled excitation and emission spectra T. A. Miller and V. E. Bondybey, in Molecular Ions: Spectroscopy, Structure, and Chemistry (North-Holland, 1983), The Jahn-Teller Effect in Benzenoid Cations: Theory and Experiment, pp. 201-229. ZEKE and MATI Spectroscopy C. H. Kwon and M. S. Kim, J. Chem. Phys. 120, 11578 (2004). C6H6+, C6D6+ ZEKE and MATI Spectroscopy R. Linder, K. Müller-Dethlefs, E. Wedum, K. Haber, and E. R. Grant, Science 271, 1698 (1996). R. Linder, Dissertation, TU Müchen, 1996. C. H. Kwon, H. L. Kim and M. S. Kim, J. Chem. Phys. 119, 4305 (2003). A. B. Burrill, Y. K. Chung, H. A. Mann, and P. M. Johnson, J. Chem. Phys. 120, 8587 (2004). IR Spectroscopy of Ar·C6(H/D)6+ R. G. Satink, H. Piest, G. von Helden, and G. Meijer, J. Chem. Phys. 111, 10750 (1999); J. Bakker, R. G. Satink, G. von Helden, and G. Miejer, Phys. Chem. Chem. Phys. 4, 24 (2002); J. Bakker, L. Mac Aleese, R. G. Satink, G. von Helden, and G. Meijer, unpublished results. Computation J. Eiding, R. Schneider, W. Domcke, H. Koppel, and W. von Neissen, Chem. Phys. Lett. 177, 345 (1991). B. E. Applegate and T. A. Miller, J. Chem. Phys. 117, 10654 (2002). A. Avoird and V. F. Lotrich, J. Chem. Phys. 120, 10069 (2004). BENZENE CATION PES Benzene Cation Pseudorotation 1 1 1 1 1 1 Benzene Cation e2g Vibrational Modes 18 573 16 1571 17 1152 15 3017 C6H6+ ZEKE Spectrum 00 Ab initio fundamentals and overtones 81 21 41 61 71 82 Fit fundamentals and overtones Ab initio quadratic Jahn-Teller 201 (e1g, e1u, e2u) 111 191 202 Fit and split quadratic Jahn-Teller nj 1 j=1/2 2 nj 1 2 j=3/2 3 4 3 Ab initio linear JahnTeller (e2g) 4 5 6 5 6 7 7 8 x30 x30 Fit linear Jahn-Teller Simulation Experimental 0 500 cm-1 1000 1500 9 C6D6+ ZEKE Spectrum 00 Ab initio fundamentals 81 and overtones 41 71 82 101 21 61 4181 Fit fundamentals and overtones Ab initio quadratic Jahn-Teller 201 (e1g, e1u, e2u) 202 191 111 Fit and split quadratic Jahn-Teller nj 1 j=1/2 nj 1 j=3/2 2 2 3 Ab initio linear JahnTeller (e2g) 3 4 4 5 6 7 5 6 8 7 8 9 9 10 10 11 12 x4 x4 Fit linear Jahn-Teller Simulation Experimental 0 500 cm-1 1000 1500 400 600 800 1000 cm-1 1400 1200 1400 191+|1/2, 2> 1200 141+|1/2, 2> 41 81 1600 3 1600 82141 6171 2141 131 81141 91 41+|3/2, 3> 41+|3/2, 4> 81191 141+|3/2, 1> 141+|3/2, 2> 201+|3/2, 2>* 201+|3/2, 1>* 2 21191 21101 2 41+|3/2, 3> 41+|3/2, 4> 1000 101 141 191* |1/2, 2>* 41 * 1 6171 1 41+|1/2, 3> 800 141+|3/2, 1> 141+|3/2, 2> Ar-C6D6+ 191* 418 1* 101* 600 141 400 201+|3/2, 1>*, 81201 201+|3/2, 2>*, 81201 41 * Benzene Cation IR Spectra 81201 Ar-C6H6+ 3 4 1800 4 1800 Benzene Cation Jahn-Teller Energy Stabilization and Geometric Distortion S Exp εT εB Minimum Intersection εT εB εT εB 726 1 757 -9 1542 62 + 821 3 1019 5 2094 86 1237 0 1474 0 2147 0 C5H5 0 2k 3 S cos ΔS (Å/rad) Exp Calc C6H6+ C6D6+ C6(H/D)6+ C-C-C bend 0.032 0.033 0.029 C-C stretch 0.038 0.036 0.037 C-C-H bend 0.022 0.014 0.011 C-H stretch 0.0005 0.008 0.0009 Calc C6H6+ C6F6 S Symmetry coordinate Stabilization Energy (cm-1) in e2g modes Molecule k Jahn-Teller Parameters C6H6+ C6D6+ Constant Ab initio calc. Exp. fit Ab initio calc. Exp. fit ωe,18 573 584 546 555 D18 0.42 0.51 0.38 0.46 K18 0.013 0.022 0.015 0.032 ε18π/3 240 293 206 245 ε180 246 306 213 262 ωe,17 1152 1161 844 856 D17 0.12 0.12 0.11 0.13 K17 -0.020 -0.008 -0.018 -0.008 ε17π/3 144 138 94 116 ε170 138 136 91 114 ωe,16 1571 1543 1518 1486 D16 0.23 0.18 0.29 0.24 K16 -0.012 -0.018 -0.013 -0.022 ε16 π/3 373 275 453 366 ε160 364 265 442 350 εT 757 707 753 727 εB -9 1 -7 -1 PES Scans State Averaged CAS(5,6)/aug-cc-pVDZ 200 Linear Stabilization (cm-1) 16 17 18 ε18 ε17 ε16 εT State Averaged 299 162 440 901 CAS Analytical 246 138 364 757 Experimental 306 136 265 707 ε18B ε17B ε16B εBa State Averaged 17 -1 -6 10 CAS Analytical 6 -6 -9 -9 Experimental 13 -2 -10 1 -1 E(cm ) 0 -200 a -400 -0.4 B2g B3g 0 /3 -0.2 0.0 o (amu1/2 A) 0.2 0.4 Net barrier to B3g(Φ=π/3) geometry with respect to B2g(Φ=0) geometry CH3O A1 Vibrational Modes 3(1040) 2 (1422) 1(2822) CH3O E Vibrational Mode 6 (1082) 5 (1434) 4 (2891) Methoxy Dispersed Fluorescence ~ SPIN-VIBRONIC CONSTANTS OF THE X2E STATES OF THE METHOXY FAMILY OF RADICALS Parameter CH3O CD3O CH3S CF3O CF3S Totally symmetric modes e,1 - - 2776 1215 1142 e,2 1350 005 1313 088 865 e,3 1050.5 1036 727 527 449 Degenerate modes aFixed bFor e,4 2835 2100 - - - D4 0.02 0.03 0 0 0 K4 0 0 0 0 0 e,5 1417 1070 - 600 536 D5 0.075 0.17 0 0.04 <0.01 K5 -0.032 -0.03 0 0 0 e,6 1065 825 913a 465b 320 D6 0.24 0.20 0.045 0.45 0.24 K6 -0.14 -0.16 0 0.05 0 ae -145 -145 -340 -140 -360 total 419 410 41 233 77 SOtotal 370 367 0 203 0 at ab initio value CF3O an anharmonicity in 6 was observed, exe=8cm-1 6(TH)=221 5(TH)=33 4(TH)=2 6=256 5=106 4=57 6(SO)=251 5(SO)=94 4(SO)=34 (TH)total=i i(TH)=256 total=i i=419 (SO) total=i i(SO)=379 All values in cm-1 6(TH)=217 5(TH)=0 4(TH)=0 6=77 5=0 4=0 6(SO)=0 5(SO)=0 4(SO)=0 (TH)total=i i(TH)=217 total=i i=77 (SO)total=i i(SO)=0 All values in cm-1 Spin-Orbit Splitting in Methoxy Family Radicals O atom Observed Splitting (v=0) -159 a Observed Splitting (v=0) a -159 S atom -396 -396 OH -139 -139 SH -377 -377 CH30 -61 -145 CH3S -256 -340 CD3O -56 -145 CF3O -41 -140 CF3S -350 -360 FO -196 -196 FS -398 -398 Conclusions •Jahn-Teller active molecules serve as excellent tests of our understanding of conical intersections •The spectra of Jahn-Teller active organic radicals can be reproduced using analytical PESs, but require the inclusion of other than traditional Jahn-Teller terms •Modern computational chemistry codes can be utilized to provide excellent initial estimates for Jahn-Teller parameters • Best parameter estimates result from computations at the global minimum rather than the conical intersection ACKNOWLEDGEMENTS Tim Barckholtz - Exxon-Mobil Brian Applegate - UNC Chris Carter – Johns Hopkins Ilias Sioutis - OSU György Tarczay – Eötvös U National Science Foundation Photochemical Processes with Conical Intersections 2+2 cycloadditions Paterno-Buchi reaction Acrolein photophysics 1,2-dioxetanes Annulene Azulene S1 decay Ring opening of cyclobutenes Carbene formation from diazirine and diazomethane Photodegradation of polysilanes Sigmatropic Rearrangement Photorearrangement of Fulvene S1 decay of But-1-ene acylcyclopropenes to furans Cycloaddition of Dewar Benzene Styrene photoisomerization Cis-trans Isomerisation of polyenes Photochemical Photochemistry of hexatransformation of ergosterol 1,5-dienes 1,3-diazabicyclo [2.2.1]hept-2 ene Singlet and triplet photofragmentation of ketene Oxadi-p-methane and [1,3]acyl sigmatropic rearrangements of beta,gamma-enones M. A. Robb and co-workers Cyclohexadiene/hexatriene photochemical interconversion Origins of Life 1. Genesis Can’t be understood by chemistry or physics 2. Panspermia Life arrived on earth from outer space Arrhenius, Crick 3. Biopoiesis Abiogenic synthesis of organic compounds from prebiotic materials Miller and Urey, 1953 NH3 + CH4 + H2O + H2 + lightning, UV light amino acids, sugars, nucleobases 1% solution of amino acids in ancient oceans: prebiotic soup Sagan DNA, RNA: Biology's Natural Sunscreens Nucleotides transform electronic energy into heat in < 1 ps Rapid conversion made possible by conical intersection between S1 and S0 Subpicosecond nonradiative decay is responsible for high intrinsic photostability same functionality as sunscreens, photostabilizers J. M. Pecourt, J. Peon, and B. Kohler, J. Am. Chem. Soc. 122, 9348 (2000) and New Scientist 167 12 (2000). JAHN-TELLER POTENTIAL ENERGY SURFACE (PES) Comparison of ab initio Calculations C 6H 6+ C 6D 6+ This work Eiding et al. This work Eiding et al. ωe,15 3017 3168 2241 2340 D15 <0.01 <0.01 <0.01 <0.01 ε15 <1 <1 <1 <1 ωe,16 1571 1610 1518 1560 D16 0.23 0.35 0.29 0.43 ε16 373 564 453 671 ωe,17 1152 1178 844 863 D17 0.12 0.15 0.11 0.14 ε17 144 177 94 121 ωe,18 573 607 546 579 D18 0.42 0.58 0.38 0.52 ε18 240 352 206 301 εT 757 1092 754 1093 Methoxy Spectrum and Simulation (a) Experimentally determined spectrum 61 (j = 3/2) (b) Simulated spectrum using ab initio parameters 62 (j = 3/2) -3000 -2500 61 (j = 1/2) 62 (j = 1/2) -2000 -1500 -1000 -1 Energy (cm ) -500 0 Experimental ZEKE Apparatus MCP/ Electromultiplier Excimer Photolysis TOF Tube Zn(C2H5)2 Skimmer Repeller Plate 10-7 Torr Nozzle 10-3 Torr = two dye lasers Lowest Vibronic Levels and Eigenfunctions h(ωe) h(ωe)+ l(D)+ q(K) h(ωe)+ l (D) h(ωe)+ q(K) h(ωe)+ l (D) h(ωe)+ q(K)