Transcript irfu.cea.fr
Cluster Models P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1. Evidences for clustering 2. Cluster models: non-microscopic (nucleus-nucleus interaction) microscopic (NN interaction) continuum states 3. Application 1 : 5H and 5He (microscopic 3 body) 4. Application 2 : triple a process (non-microscopic) 5. Application 3: 18F(p,a)15O (reaction, microscopic 2 body) 6. Conclusions 1 Introduction • Clustering: well known effect in light nuclei • Nucleons are grouped in “clusters” Best candidate: a particle (high binding energy, almost elementary particle) Ikeda diagram: cluster states near a threshold (8Be, 20Ne, etc • Halo nuclei: special case of cluster states • Beyond the nucleon level: hypernuclei quarks etc. 2 1. Evidence for clustering Large distance between the clusters wave function important at large distances Example :a+16O 3a+16O cluster 4+ 2+ Non-cluster wave function 1- a+16O wave function 1- + 0 0 2 4 r (fm) 6 8 10 0+ 20Ne Comparison of radii:a~1.4 fm, 16O~2.7 fm For 20Ne 0+: <r2>1/2=3.9 fm For 20Ne 1-: <r2>1/2=5.6 fm 3 Evidence for clustering Large reduced width Defines the reduced width g2 (Pl=penetration factor) gW2=Wigner limit=32/2ma2 8Be: a cluster states 7Li: a cluster states and neutron cluster states q2(a)=0.01 q2(n)=0.26 q2(a)=0.52 q2(n)=0 q2(a)= 0.40 q2(a)=0.28 4 Evidence for clustering Exotic cluster structure: 6He+6He in 12Be M. Freer et al, Phys. Rev. Lett. 82 (1999) 1383 Rotational band: E(J)=E0+2J(J+1)/2mR2 With R=distance estimate Calculation: P.D., D. Baye, Phys. Lett. B505 (2001) 71 Mixing of 6He+6He and a+8He Particular cluster structure: halo nuclei: 11Be=10Be+n 6He=a+n+n neutron=simplest cluster 5 Cluster models vs ab initio models cluster models: assume a cluster structure effective nucleon-nucleon interaction direct access to continuum states • microscopic (full antisymmetrization, depend on all nucleons) • non microscopic (nucleus-nucleus interaction) • semi-microscopic (approximate treatment of antisymmetrization) ab initio models: more general try to determine a cluster structure realistic nucleon-nucleon interaction • Antisymmetrized Molecular Dynamics (AMD) • Fermionic Molecular Dynamics (FMD) • No Core Shell Model (NCSM) • Green’s Function Monte Carlo • Etc… 6 2. Cluster Models Several variants • Non microscopic 2 clusters nucleus-nucleus interaction 3 clusters • Microscopic: 2 clusters nucleon-nucleon interaction 3 clusters r y x r x y 7 Cluster Models 2-cluster models • General description • Microscopic approach: The generator coordinate method (GCM) • Continuum states: the R-matrix method 3-cluster models • Hyperspherical coordinates • General description 8 2-body models Non-microscopic: 2 particles without structure = potential model Microscopic (+cluster approx.) RGM, GCM r r A A i 1 i j H Tr V (r ) H Ti Vij lm g l (r )Yl m () lm A 1 2 g l (r )Yl m () ex: aa, p+16O, etc. 1 ,2=internal wave functions Solved by the GCM ex: 12C+a, 18F+p, etc. 9 The Generator Coordinate Method (GCM) for 2 clusters The wave functions are expanded on a gaussian basis 1. potential model (non microscopic) Schrödinger equation: Expansion: r=quantal relative coordinate Rn=generator coordinate (variational calculation) 10 The Generator Coordinate Method (GCM) for 2 clusters 2. Microscopic A A i 1 i j H Ti Vij lm A 1 2 g l (r )Yl m () RGM notation GCM expansion Slater Determinants GCM notation the basis functions are projected Slater determinants (b1=b2=b) variational calculation needs matrix elements matrix elements between Slater determinants (projection numerical) can be extended to 3-clusters 11 Continuum states • Necessary for reactions • Exotic nuclei: low Q value continuum important • Simple for 2 clusters, difficult for 3 clusters • Various methods: • Exact: calculation of the phase shift • Approximations: Complex scaling, Analytic continuation (ACCC), box, etc. (in general, only resonances) • Use of the R-matrix method: the space is divided into 2 regions (radius a) •Internal: r ≤ a : Nuclear + coulomb interactions : antisymetrization important •External: r > a : Coulomb only : antisymetrization negligible 12 The R-matrix method: phase-shift calculation •2 body calculations (spins zero) Internal wave function: combination of Slater determinants External wave function: Coulomb (Ul=collision matrix) Bloch-Schrödinger equation: With L = Bloch operator • restore the hermiticity of H over the internal region) • ensures 13 The R-matrix method: phase-shift calculation Solution of the Bloch-Schrödinger equation: R-matrix equations N+1 unknown quatities (Ul, fl(Rn)), N+1 equations <>I=matrix element over the internal region stability with the channel radius a is a strong test 14 3-body models: Hyperspherical coordinates y1 Jacobi coordinates x1, y1 x1 3 sets (xi, yi), i=1,2,3 Hyperspherical coordinates: 6 coordinates Hamiltonian: 15 Schrödinger equation JMp is expanded over the hyperspherical harmonics To be determined Known functions hyperspherical harmonics • g=lx,ly,L,S • Set of equations for • Truncation at K = Kmax ly lx • Can be extended to 4-body, 5-body, etc… 17 Three-body Models Non microscopic y1 Microscopic R x1 r Hamiltonian Vij=nucleus-nucleus interaction Problems with forbidden states Ex: 6He=a+n+n 12C=aaa 14Be=12Be+n+n A A i 1 i j Hamiltonian: H T V i ij Vij=nucleon-nucleon interaction Ex: 6He=a+n+n 5H=t+n+n Projection: 7-dim integrals 18 3. Application to 5H and 5He A. Adahchour and P.D., Nucl. Phys. A 813 (2008) 252 3.1Introduction • 5H unbound, with N/Z=4: very large value • Expected 3-body structure: 3H+n+n • Many works: experiment theory • Difficult for theory and experiment (unbound AND 3-body structure) still large uncertainties on • ground state (Energy, width) • level scheme? • Isospin symmetry expected 5He(T=3/2) analog states (suggested by Ter-Akopian et al., EPJ A25 (2005) 315) 19 Application to 5H and 5He 3.2 Conditions of the calculation: microscopic 3-cluster NN interaction: Minnesota H=H0+u*V (u=admixture parameter in the Minnesota interaction: u~1) 3He+p From 3He+p: u=1.12 3H+n 20 Application to 5H and 5He Cluster structure: n x 5H=3H+n+n Tz=3/2,T=3/2 y 3H n n 5He=3He+n+n coupled with 3H+n+p Tz=1/2, T=1/2,3/2 3He n n 3H p Main difficulty: unbound states need for specific methods: ACCC 21 Application to 5H and 5He 3.3 Analytic Continuation in the Coupling Constant (ACCC) [V.I. Kukulin et al., J. Phys. A 10 (1977) 33] • Write H as H=H0+lV (l=1 is the physical value, E(l=1)>0 unbound state) • Determine l0 such as E(l0)=0 • For l > l0 : E(l)<0 bound-state calculation Padé approximant • l > l0 : x real, k imaginary, E real <0 • l < l0: x imaginary, k complex, E=k2=ER-iG/2 the width can be computed E(l) 1 l0 l • Choose M+N+1 l values l > l0 determine ci,dj • Use l=1 k complex Main problem: stability! 22 Application to 5H and 5He(T=3/2) 5H,5He T=3/2 state?? 3-body decay: a+n and t+d forb. 3He+n+n 3H+n+n 3H+n+p 5H 5He T=1/2 states: a+n structure 4He+n 23 Application to 5H and 5He(T=3/2) Microscopic wave function: ci(r) expanded in gaussians centred at R = Generator Coordinate Method Energy curves E(R): eigenvalue for a fixed R value 5H Convergence with Kmax 10 Different J values 15 5 H, J=1/2+ 3/2 E(R) (MeV) E(R) (MeV) 8 6 4 4 5 H 10 5/2+ 1/2- 4 6 5 8 2 12 2 + 1/2+ 0 0 0 2 4 6 R (fm) fast convergence 8 10 12 0 2 8 10 12 R (fm) 1/2+ expected to be g.s. 24 3. Results for 5H and 5He(T=3/2) Application of the ACCC method search for resonance energies and widths test of the stability with N (Padé approximant) Er ~ 2 MeV G ~ 0.6 MeV “theoretical” uncertainties 25 3. Results for 5H and 5He(T=3/2) 5He Energy curves 15 3/2+ 10 1/2 5/2 + Weak coulomb effects: essentially threshold + E(R) (MeV) 5 T=3/2 0 0 2 -5 5/2 + 4 6 8 10 12 3/2+ -10 -15 1/2+ T=1/2 -20 R (fm) 26 3. Results for 5H and 5He(T=3/2) 5 H J=1/2+ J=3/2+ E= G E= G present 1.9 ± 0.1 0.6 ± 0.2 4±1 3±1 E= G 2.2 ± 0.2 1.0 ± 0.2 Th.[1] Th.[2] 2.5-3.0 2.8-3.0 3-4 1-2 6.4-6.9 8 Th.[3] 1.59 2.48 3 4.8 Th.[4] Exp.[1] Exp.[2] 1.39 1.7 ± 0.3 ~2 1.6 1.9 ± 0.4 2.11 2.87 5 He J=1/2+ Th.[1]: N.B. Shul’gina et al., Phys. Rev. C 62 (2000) 014312 Th.[2]: P.D. and A. Kharbach, Phys. Rev. C 63 (2001) 027001 Th.[3]: K. Arai, Phys. Rev. C 68 (2003) 03403 Th.[4]: J. Broeckhove et al., J. Phys. G. 34 (2007) 1955 Exp.[1]: A.A. Korsheninnikov et al., PRL 87 (2001) 092501 Exp.[2] M.S. Golovkov et al., PRL 93 (2004) 262501 broad state in 5He: Ex~21.3 MeV G~1 MeV 27 4. Application to 12C poorly known aaa Main issues: • Simultaneous description of a-a scattering and of 12C? • Bose-Einstein condensate? Well known • Astrophysics (Triple-a process, Hoyle state + others?) Two approaches • Microscopic theory • Non microscopic theory 3a continuum states? 28 4. Application to 12C a. Microscopic models 1) RGM: M. Kamimura (Nucl. Phys.A 351 (1981) 456) : form factors of 12C 2) GCM: E. Uegaki et al., PTP62 (1979) 1621: triangle structure of 12C P.D., D.Baye, [Phys. Rev. C36 (1987) 54]: 8Be+a model 8Be(a,g)12C S factor 2+ resonance (with the 02 state as bandhead) 3) GCM + hyperspherical formalism aaa M. Theeten et al., Phys. Rev. C 76 (2007) 054003 Only 12C spectroscopy (energies, B(E2), densities) 29 a-a phase shifts 12C microscopic 12C Energy spectrum 4+ 6 4 1- 1- 3- 2 0+ 3- 0+ 0 -2 12C 2+ 4+ energy curves -4 -50 -6 -55 - 1 E (MeV) -60 0+ -8 3- 2+ -65 -10 + -70 4 -75 0+ + 2 0+ -80 GCM exp -85 0 5 10 R (fm) 15 30 Application to 12C B. Non-Microscopic model aa scattering well described by different potentials – deep potentials (Buck potential) – shallow potentials (Ali-Bodmer potentials) we may expect a good description of the 3a system Removal of a-a forbidden states: projection method (V. Kukulin) supersymmetric transformation (D. Baye) 200 l=0 150 Buck potential (Nucl. Phys. A275 (1977) 246) • V=-122.6 exp(-(r/2.13)2) • deep • l independent l=2 delta (degres) l=4 100 50 0 0 5 10 -50 Ecm (MeV) 15 Others: a-a phase shifts have a similar quality 31 12C spectrum, J=0+ 0 -2 -4 Ali-Bodmer potential (shallow) Buck potential (deep) -6 exp ABD0 AB Buck+sup Buck+sup Buck+ proj x 1.088 no satisfactory potential!! 32 Application to 12C Calculation of 3a phase shifts: • Need for appropriate a-a potentials (3a potentials?) • Derivation of a-a potentials – from RGM kernels (non local) • M. Theeten et al., PRC 76 (2007) 054003 • Y. Suzuki et al., Phys. Lett. B659 (2008) 160 – Fish-bone model: reproduces aa and aaa • Z. Papp and S. Moszkowski, Mod. Phys. Lett. 22 (2008) 2201 Non local potentials difficult for 3-body continuum states • Microscopic approach to 3-body continuum states? In progress for a+n+n 33 5. Application to 18F(p,a)15O Ref.: M. Dufour and P.D., Nucl. Phys. A785 (2007) 381 Very important for novae 18F+n Many experimental works: • Direct (18F beam) 18F+p • Indirect (spectroscopy of 19Ne) • 2 recent experiments 19Ne 19F Microscopic cluster calculation (19-nucleon system) High level density limit of applicability Questions to address: • Spectroscopy of 19F and 19Ne (essentially J=1/2+,3/2+: s waves) • 18F(p,a)15O S-factor • How to improve the current status on 18F(p,a)15O? 34 Application to 18F(p,a)15O • NN interaction: modified Volkov (reproduces the Q value) + spin-orbit • Multichannel: p+18F a+15O n+18Ne • Shell model space: sd shell for 18F, 18Ne, p shell for 15O 18F: J=1+ (x7), 0+ (x3), 2+ (x8), 3+ (x6), 4+ (x3), 5+ (x1) 15O : J=1/2-, 3/218Ne: J=0+ (x3), 1+ (x2), 2+ (x5), 3+ (x2), 4+ (x2) many configurations • Spectroscopy of 19Ne and continuum states (R-matrix theory) • At low energies (below the Coulomb barrier), s waves are dominant J=1/2+ and 3/2+ 35 J=3/2+ 19 E cm ( Ne) 19 E cm ( F) 5 1 Experiment Theory n+ 18 p+ 18 4 F 18 n+ F 0 O 3 -1 2 1 0 Fitted (NN int) p+ 18 18 p+ -2 O 7.24 7.26 6.53 6.50 F -3 7.08 6.44 p+ 18 F 5.50 -1 a+ -2 a+ 15 15 N O a+ 15 -4 6.42 -5 N 4.03 -6 3.91 -3 a+ 15 O -4 -7 -8 1.55 1.54 -9 -5 19 Ne 19 F 19 F 19 Ne 36 J=1/2+ (no parameter) Ecm (19Ne) 19 Experiment Theory 5 n+ 18 p+ 18 F n+ 18 0 O -1 3 8.65 Near threshold 8.14 7.36 1 0 1 F 4 2 E cm ( F) p+ 18 F 6.26 5.94 (5.34) -1 -2 a+ a+ 15 15 N a+ 15 p+ 18 -2 O ? p+ F 5.35 -4 -5 -6 N a+ O 18 -3 15 O -3 -7 -4 -8 -5 -9 -6 -7 0 19 Ne 19 F 19 F 0 19 Ne -10 -11 37 Microscopic 18F(p,a)15O S factor 105 18 S (MeV-b) 10 F(p,a)15O 4 Oak Ridge Louvain-la-Neuve 103 total 10 2 10 1 1/2 + 3/2+ 100 0 0.5 1 1.5 Ecm (MeV) 1/2+= s wave important down to low energies (constructive) interference with the subthreshold state 38 Drawbacks of the model: • Some 3/2+ resonances missing • 1/2+ properties not exact (in 19F, unknown in 19Ne) • R matrix: allows to add resonances (3/2+) or to modify their properties (1/2+) Ecm (MeV) 2 2 7.90 known in 19F unknown in 19Ne 1 1 18 p+ F 0 n+ 18 F -1 Theory 19F, exp. J=1/2+ 19Ne modified spectrum 0 -1 -2 6.00 5.35 15 a+ O -3 J=1/2+ -4 -5 -6 -7 0 19 Ne 39 prediction of two 1/2+ states: E=-0.41 MeV, G=231 keV E= 1.49 MeV, G=296 keV, Gp/G=0.53 18F(p,a)15O S factor 3/2+ resonances: interferences? S (MeV-b) 105 10 4 10 3 10 2 F(p,a)15O 18 total +/+ +/- 1/2+ 101 0 1 0.5 1.5 Ecm (MeV) • Consistent with experiment • Uncertainties due to 3/2+ strongly reduced near 0.2 MeV (1/2+ dominant) 40 Two recent experiments J.-C. Dalouzy et al: Ganil + LLN, Ref: Phys. Rev. Lett. 102, 162503 (2009) 19Ne+p 19Ne*+p 18F+p+p 18F+p 19Ne evidence for a broad 1/2+ peak (E) near Ecm=1.45 MeV, G=292107 keV Cluster calculation Ecm=1.49 MeV, G=296 keV 41 A.C. Murphy et al: • Edinburgh + TRIUMF (radioactive 18F beam): Phys. Rev. C79 (2009) 058801 • Simultaneous measurement of 18F(p,p)18F and 18F(p,a)15O cross sections • R-matrix analysis many resonances ds/d (mb/sr) 400 60 18F(p,p)18F 300 18F(p,a)15O 50 40 200 30 20 100 10 0 0 0.50 0.75 1.00 1.25 1.50 1.75 0.50 Ecm (MeV) no evidence for a 1/2+ resonance (E too low?) 0.75 1.00 1.25 1.50 1.75 Ecm (MeV) 42 6. Conclusions 1. Cluster models • Different variants: microscopic semi-microscopic non microscopic • Continuum accessible (R-matrix) 2. 5H, 5He(T=3/2) • • 3. resaonable agreement with other works 5He (T=3/2): analog state of 5H above 3H+n+p threshold Ex~21.3 MeV, G~1 MeV 12C • • 4. 5H: Impossible to reproduce 2a and 3a simultaneously (all models) 3a continuum: future microscopic studies possible (a+n+n in progress) 18F(p,a)15O • • • The GCM predicts a 1/2+ resonance (s wave) near the 18F+p threshold Observed in an indirect experiment Not observed in a direct experiment 43