Transcript Document
University of Zagreb Faculty of Mechanical Engineering and Naval Architecture Department of Energy, Power Engineering and Environment Chair of Power Engineering and Energy Management Status – Validation of Eulerian Spray Modelling Milan Vujanovic May, 2006 Validation: I-Level project Version v8.5006 vs. Version v8.5014 Nozzle D – 205 micron diameter Rail pressure – 500 bar Gas chamber pressure – 72 bar Gas temperature in chamber - 900 K Test Case - Nozzle D – 205 micron diameter Point Railpressure Gas chamber pressure 4 500 bar 72 bar Temperature 900 K Experimental data – injection rate: Inlet velocity [m/s] Modified Inlet Flow Velocity 500 bar, Nozzle D 205 micron injection rate [mm³/ms] rate at 500 bar 20 rate at 500 bar 15 10 5 500 vel at 500 bar velmod at 500 bar 400 300 200 100 0 0 -0,5 0 0,5 1 1,5 2 2,5 time [ms] 3 0 0,001 0,002 0,003 time [s] Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 1.0e-06 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 500 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results 8.5006 8.5014 Validation: I-Level project Impact of initial k and epsilon values Nozzle D – 205 micron diameter Rail pressure – 500 bar Gas chamber pressure – 72 bar Gas temperature in chamber - 900 K Case 1_1 Turb. kin. energy – 10 m2/s2 Turb. length scale – 2e-05 m Turb. diss. rate – 259 808 m2/s3 Case 6_1 Turb. kin. energy – 250 m2/s2 Turb. length scale – 2e-05 m Turb. diss. rate – 3.247e+07 m2/s3 Point Railpressure Gas chamber pressure 4 500 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results Case 1_1 Turb. kin. energy – 10 m2/s2 Turb. length scale – 2e-05 m Turb. diss. rate – 259 808 m2/s3 Case 6_1 Turb. kin. energy – 250 m2/s2 Turb. length scale – 2e-05 m Turb. diss. rate – 3.247e+07 m2/s3 Validation: I-Level project Impact of constant cε2 Nozzle D – 205 micron diameter Rail pressure – 500 bar Gas chamber pressure – 72 bar Gas temperature in chamber - 900 K The constant cε2 in the transport equation for the dissipation rate of the turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92 Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 1.0e-06 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 500 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results cε2=1.92 cε2=1.8 Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 1.0e-06 / 5.0e-07 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 500 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results cε2=1.92 cε2=1.8 Validation: I-Level project Impact of constant cε2 Nozzle D – 205 micron diameter Rail pressure – 1200 bar Gas chamber pressure – 72 bar Gas temperature in chamber - 900 K The constant cε2 in the transport equation for the dissipation rate of the turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92 Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 5.0e-07 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 1200 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results cε2=1.92 cε2=1.8 Validation: I-Level project Impact of constant cε2 Nozzle D – 205 micron diameter Rail pressure – 500 bar Gas chamber pressure – 54 bar Gas temperature in chamber - 900 K The constant cε2 in the transport equation for the dissipation rate of the turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92 Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 1.0e-06 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 500 bar 54 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results cε2=1.92 cε2=1.8 Validation: I-Level project Impact of constant cε2 Nozzle D – 205 micron diameter Rail pressure – 800 bar Gas chamber pressure – 54 bar Gas temperature in chamber - 900 K The constant cε2 in the transport equation for the dissipation rate of the turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92 Calculation settings Time discretisation: Upto upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 0.0026 Δt 2.5e-08 2.5e-07 5.0e-07 5.0e-07 Phase The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 4.5 Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 800 bar 54 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results cε2=1.92 cε2=1.8 Validation: I-Level project Impact of constant cε2 Nozzle D – 205 micron diameter Rail pressure – 1200 bar Gas chamber pressure – 54 bar Gas temperature in chamber - 900 K The constant cε2 in the transport equation for the dissipation rate of the turbulent kinetic energy was set to cε2= 1.8 instead cε2=1.92 Calculation settings Time discretisation: Upto upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 0.0026 Δt 2.5e-08 2.5e-07 5.0e-07 5.0e-07 Phase The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 1200 bar 54 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results cε2=1.92 cε2=1.8 Validation: I-Level project k – zeta – f turbulence model Nozzle D – 205 micron diameter Rail pressure – 500 bar Gas chamber pressure – 72 bar Gas temperature in chamber - 900 K Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 1.0e-06 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 500 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results k – epsilon k –zeta - f Validation: I-Level project k – zeta – f turbulence model Nozzle D – 205 micron diameter Rail pressure – 1200 bar Gas chamber pressure – 54 bar Gas temperature in chamber - 900 K Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 5.0e-07 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 1200 bar 54 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results k – epsilon k –zeta - f Validation: I-Level project Calculation with nozzle interface Coupling internal nozzle flow simulation and initialisation of spray calculation Nozzle D – 205 micron diameter Rail pressure – 500 bar Gas chamber pressure – 72 bar Gas temperature in chamber - 900 K Using the data of the two phase flow calculation inside the nozzle as a start and boundary condition for Eulerian spray calculation Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 1.0e-06 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 500 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results without nozzle interface with nozzle interface Validation: I-Level project Calculation with nozzle interface Coupling internal nozzle flow simulation and initialisation of spray calculation Nozzle D – 205 micron diameter Rail pressure – 1200 bar Gas chamber pressure – 72 bar Gas temperature in chamber - 900 K Using the data of the two phase flow calculation inside the nozzle as a start and boundary condition for Eulerian spray calculation Calculation settings Time discretisation: Upto upto upto upto Time [s] 1.0e-6 1.0e-4 2.0e-4 Δt 2.5e-08 2.5e-07 5.0e-07 upto 0.0026 1.0e-06 The liquid → Diesel → T=373 K Eulerian spray with 6 phases Primary brake-up model: Dies.Core Injection Secondary brake-up model: Wave model Evaporation model: Abramzon-Sirignano model Turbulent dispersion coefficient = 6 Phase Fluid Class diametre [m] 1 gas 2 droplet 5e-0.6 3 droplet 1e-0.5 4 droplet 2e-0.5 5 droplet 4e-0.5 6 droplet 0.000205 Point Railpressure Gas chamber pressure 4 1200 bar 72 bar Temperature 900 K Penetration for liquid phase and vapour phase compared with experimental results without nozzle interface with nozzle interface University of Zagreb Faculty of Mechanical Engineering and Naval Architecture Department of Energy, Power Engineering and Environment Chair of Power Engineering and Energy Management The end 2nd phase of validation: I-Level project Nozzle D – 205 micron diameter Experimental data – injection rate: Points Railpressure Gas chamber pressure 1 500 bar 54 bar 900 K 2 800 bar 54 bar 900 K 3 1200 bar 54 bar 900 K 4 500 bar 72 bar 900 K 5 800 bar 72 bar 900 K 6 1200 bar 72 bar 900 K Temperature Test Case: I-Level project injection rate [mm³/ms] Nozzle D – 205 micron diameter Experimental data – injection rate: 20 rate at 300 bar rate at 800 bar rate at 500 bar rate at 1200 bar 15 10 5 0 -0,5 0 0,5 1 1,5 2 2,5 time [ms] 3