Transcript Document
Tetra Point Wetting at the Free Surface of a Binary Liquid Metal Patrick Huber, Oleg Shpyrko, Peter Pershan, Holger Tostmann*, Elaine DiMasi**, Ben Ocko**, Moshe Deutsch*** Department of Physics, Harvard University, Cambridge MA, U.S.A. *University of Florida, Gainesville, FL, ** Brookhaven National Lab, Upton, NY, *** Bar-Ilan University, Tel Aviv X-ray reflectivity measurements X-ray reflectivity from GaBi at T=200°C (X22B NSLS, CMC-CAT APS) 0 10 beam-bending monochromator -1 10 -2 liquid metal sample ( * , T ) plane Scattering geometry 270 Consolute Point TC 10 synchrotron beam, horizontal Our measurements of the microscopic structure of the wetting film in combination with the known bulk thermodynamics allow calculations of liquid-liquid interfacial tensions and the extraction of information on the surface potential. (c, T ) plane -3 10 qZ kin -4 1x10 liquid-liquid coexistence liquid-liquid coexistence, metastable liquid-solid coexistence 250 kout -5 1x10 -6 10 z consolute point 260 -7 10 < = = > TM Temperature [°C] Scattering setup Temperature T We present x-ray reflectivity measurements from the free surface of a gallium-bismuth (Ga-Bi) alloy over a temperature range from T = 200°C up to T=280°C. We found a continuous formation of a wetting film at the surface driven by the phase transition of first order in the bulk at the monotectic temperature TM = 222°C. The observed wetting scenario is closely related to triple point wetting known from one component systems and properly described as complete wetting at a solid-liquid-liquid-vapor tetra point [1,2]. Microscopic View on Tetra Point Wetting X-ray reflectivity Abstract 240 230 monotectic point 220 210 -8 surface height tracking Bulk thermodynamics 10 0.00 0.50 0.75 1.00 1.25 1.50 200 -1 -0.10 -0.15 -0.20 -0.25 Concentration of Gallium 1.6 T > TC (regime III): • Free Energy G(c,T) available from CALPHAD project [4] homogeneous regime III: Gibbs adsorbed monolayer of pure Bi. 1.4 1.2 1.0 0.8 0 20 40 60 80 100 4.0 regime II: Thick wetting film of the heavier Bi-rich phase intrudes between the low density, Ga-rich phase and the vapor phase in defiance of gravity. [5,6] 1.6 3.5 Consolute Point regime I: Gibbs adsorbed monolayer of pure Bi. [6,7] Tmono < T < TC (regime II): Ga-rich relative Electrondensity sub Bi-rich 3.5 1.4 1.2 2.0 1.5 280°C - regime III 225°C - regime II 200°C - regime I 3.0 218.0°C 2.5 R/RF 1.6 222.0°C 3.0 z [Å] 4.0 1.0 1.0 0.5 2.5 0.8 20 40 60 80 0.0 100 R/RF 0 z [Å] TM 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 10 20 -1 qz [Å ] 2.0 30 40 50 60 70 z [Å] 1.5 1.6 T < Tmono (regime I): relative Electrondensity sub Temperature T -0.05 (Bi-Ga) [kJ/mol] relative Electrondensity sub • Phase diagram measured with calorimetric methods by P. Predel [3] 0.00 qz [Å ] Bulk structure surface structure relative Electrondensity sub • Binary liquid metal with miscibility gap and monotectic point TC 0.25 Ga-rich 1.4 1.2 1.0 • Transition pinned at bulk first order transition (monotectic point). 0.5 • Correctly described as complete wetting at a solid-liquid-liquid-vapor tetra point. [2] (Phenomenon related to well known triple point wetting for one component systems. [1]) 1.0 0.0 solid Bi 0.8 0 20 40 60 80 0.0 100 z [Å] 0.2 0.4 0.6 0.8 1.0 -1 qz [Å ] Concentration of Gallium () experiment mean field, gradient theory () 2 cap thermal fluctuations, capillary wave theory minimize J/mol J/mol d c(z) g dz2 2 excess ( c ( z ) ) c intrinsic liquid-liquid interfacial profiles calculate 1.0 Free Energy Based on thermochemical datasets Concentration of Gallium 0.9 Common tangent construction for T=150°C 0.8 0.7 222°C 230°C 238°C 246°C 254°C 258°C 0.6 0.5 0.4 0.3 -150-120 -90 -60 -30 0 30 60 90 120 150 180 z [Å] extract 2 int r ( ), ( ) 2 cap ( ( )) Deter m 1 c(z) A N gexcess (c(z)) dz 2 z 2 i nation of gradient param eter interfacial excess energy interfacial tension [mN/m] 2 int r • Experimental data indicate film structures dominated by density gradients. - In contrast to the frequently used “homogeneous slab” models. - but in agreement with density functional calculations for wetting in binary systems at hard walls. [7] 35 30 • Wetting scenario in Ga-Bi analogous to behavior in Ga-Pb system. [12] liquid-liquid interfacial tension of Ga-Bi 25 20 15 10 5 References Gradient Theory Two-Scale Factor Universality [9] 0 [1] R. Pandit, M. E. Fisher, Physical Review Letters 51, 1772 (1983) 0.0 0.1 0.2 0.3 0.4 0.5 [2] S. Dietrich and M. Schick, Surface Science 382, 178 (1997) (TC-T)/TC liquid-liquid interfacial tension of Ga-Pb interfacial tension [mN/m] 2 obs 1.4 • Preliminary analysis suggests: short-range, screened Coulomb interactions + long-range, van-der-Waals like dispersion forces are necessary to explain evolution of profiles confirming modern treatments of interactions in metals. [11] Gradient Theory for the liquid-liquid interface [8] interfacial roughness 1.2 [3] P. Predel, Zeitschrift für Physikalische Chemie Neue Folge 24, 206 (1960) 70 [4] L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, NY (1970) 60 [5] D. Nattland, S. C. Muller, P. D. Poh, Freyland W., Journal of Non-Crystalline Solids 207, 772 (1996) 50 [6] H. Tostmann, E. DiMasi, O. G. Shpyrko, P.S. Pershan, B.M. Ocko, M.Deutsch, Physical Review Letters 84, 4385 (2000) 40 [7] N. Lei, Z. Q. Huang, and S. A. Rice, Journal of Chemical Physics 104, 4802 (1996) 30 [8] H.T. Davis, Stastical Mechanics of Phases, Interfaces, and Thin Films, Wiley-VCH, NY (1996) 20 [9] H. Kreuser and D. Woermann, Journal of Chemical Physics 98, 7655 (1993) 10 Gradient Theory f it to measurements [10] [10] M. Merkwitz, J. Weise, K. Thriemer, Hoyer W., Zeitschrift Fur Metallkunde 89, 247 (1998) 0 0.0 0.1 0.2 (TC-T)/TC 0.3 0.4 0.5 [11] N. W. Ashcroft, Philosophical Transactions of the Royal Society of London Series a 334, 407 (1991) [12] P. Wynblatt and D. Chatain, Berichte der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 102, 1142 (1998)