Transcript Slide 1
Above-threshold-ionization (ATI) of atoms in an intense, few-cycle laser pulse Marlene Wickenhauser Collaborators: Xiao Min Tong and Chii Dong Lin Schematic picture ionization of electron atom laser pulse Ar = 10 fs Calculation: = 400 - 800 nm • Electron spectra I ~ 2 x 1014 W/cm2 •2D momentum distribution Motivation Recent experiments: MPI Heidelberg, KSU e0.4 5x 1014 W/cm2 E 0.2 800 nm atom 0 P (a.u.) A. Rudenko et al. J. Phys. B 37 L407 (2004) -1.0 -0.5 0 P|| (a.u.) 0.5 1.0 Low energy spectra: -lots of structure -even in tunneling regime Introduction Multiphoton ionization Tunneling ionization Above-threshold-ionization (ATI) 1 Keldysh parameter: Ip 2U p 1 Typical ATI spectrum Absorbed Photons 18 20 22 0.2 ħω ATI peaks 0.1 ponderomotive energy 16 0 Ionization potential Electrons/eV E n ( I p U p ) 14 0.3 ħω P. H. Bucksbaum PRA 37 3615 (1988) 12 0 5 10 15 20 Energy (eV) 25 Helium I= 2.3 x 1014 W/cm2 =8 ps, 532 nm 30 Outline 1. Theory 2. Energy Spectra 3. 2D electron-momentum distribution 4. Projection on parallel momentum Theory 1) Numerical solution of TDSE -Single active electron approximation H (t ) T Veff (r) E(t ) r -grid -Split operator method for time propagation 2) Strong field approximation (SFA) Neglect: -Coulomb field on ionized electrons -Depletion of ground state -Other bound states Dipole transition moment Laser-dressed energy Energy spectrum Argon I ~ 1.7 x 1014 W/cm2 = 400 nm 10 fs SFA TDSE Energy (eV) Electron spectra from a short pulse No well defined frequency & intensity time 0.5 0 P (arb. unit) 1 E n ( I p U p ) 0 2 4 Energy (eV) 6 8 Redefined Volkov phase Laser-dressed energy: p2 A(t ')2 dt '( p A(t ') ) 2 2 t electron-field coupling energy shift: average=Up -No subpeaks -ATI peaks shifted Energy (eV) Argon 0.3 I ~ 1.7 x 1014 W/cm2 = 400 nm 10 fs 0 P (a.u.) 0.6 2D momentum Distribution - SFA -0.8 -0.4 0 P|| (a.u.) 0.4 0.8 0 2 •ATI peaks •Subpeaks •Parity •Angular momentum 4 6 Energy (eV) 8 0.6 Comparison with TDSE 0 0.6 0.3 TDSE 0 P (a.u.) 0.3 SFA -0.8 0.4 0 0.4 P|| (a.u.) 0.8 Intensity dependence Ar 400 nm Channel closing: Ip + Up threshold 6 ħω Ar: Ip = 15.76 eV 1.7 x 1014 W/cm2: Up= 2.55 eV Ip 1.7 x 1014 W/cm2 3.2 x 1014 W/cm2 0 x 1014 0.4W/cm0.8 2 2.4 3.9 x 1014 W/cm2 0.6 0 0.3 0.6 intensity -0.8 0.4 0.3 P|| (a.u.) 0 P (a.u.) 6 ħω -0.8 -0.4 0 0.4 0.8 -0.8 -0.4 0 0.4 0.8 Momentum projection e- Ne: 25 fs, 800 nm, I = 4 x 1014 W/cm2 2 4 6 8 atom Interesting points: 0 P (arb. unit) 10 Rudenko et al. J. Phys. B 37 L407 (2004) -1.0 -0.5 0 P|| (a.u.) ~ 0.6 0.5 1.0 • Dip in contrast to ADK • Neon, Helium: dip Argon: peak Explanation for dip in literature 1. Rescattering: J. Chen et al, PRA 63 11404(R) (2000) 2. Coulomb potential: K. Dimitriou et al, PRA 70 061401(R) (2004) 3. Position of ATI peaks: (in tunneling regime) F. H. M. Faisal et al, J. Phys. B 38 L223 (2005) 4. Freeman Resonance: A. Rudenko et al, J. Phys. B 37 L407 (2004) Argon dip 400 nm peak Multiphoton I = 1.7 x 1014 W/cm2 0.6 I = 3.9 x 1014 W/cm2 ~ 1.76 ~ 1.13 0 0 P|| (a.u.) 0.5 0.5 1 10 0 0.3 0.3 0.6 10 fs -1 -0.5 0 0.5 P|| (a.u.) 1 -1 -0.5 0 P|| (a.u.) 0.5 1 Argon dip 800 nm Tunneling peak I = 1.8 x 1014 W/cm2 ~ 0.85 0.3 0.6 ~ 0.89 0 0 0.5 0.5 1 0 1 0 0.3 0.6 I = 1.65 x 1014 W/cm2 10 fs -1 -0.5 0 P|| (a.u.) 0.5 1 -1 -0.5 0 P|| (a.u.) 0.5 1 Conclusion •Subpeaks in ATI spectra from short pulses •Explained structures in 2D momentum distribution •Dip in parallel momentum: -Tunneling regime: ATI peaks -Multiphoton regime: Parity of first ATI peak -Coulomb effect not relevant -Longer pulses: Freeman resonances