Transcript Document
Model validation: flux sites - NOAA/ATDD-Tilden Meyers flux data sets - Components of the surface energy budget: (incoming/outgoing short/longwave radiation, latent, sensible, ground heat flux), plus meteorological observations and sub-surface temperature and soil mositure - 11 measurement sites across CONUS - 2+ years of data available (at NCEP) FP BH SF BV,BP CV MO AZ GC WB,CH NOAA/ATDD Surface Flux Network 250 OBS_SH OBS_SH-e f 200 NLDAS_SH NDAS_SH NAM_SH 150 NCEP model vs obs MAY 2007 average fluxes NARR_SH GLDAS_SH GDAS_SH 100 GFS_SH 50 0 -50 0 3 6 9 12 15 18 21 24 LST 250 OBS_LH Ft. Peck, MT H LE Ft. Peck, MT Latent Heat Flux (W m-2) Sensible Heat Flux (W m-2) Ft. Peck, MT OBS_LH-e f OBS_LH-r es 200 NLDAS_LH NDAS_LH NAM_LH 150 NARR_LH GLDAS_LH GDAS_LH 100 GFS_LH 50 0 0 3 6 9 12 LST 15 18 21 24 MAY 2007 avg. H, NCEP model vs obs Bondville, IL-2 OBS_SH OBS_SH-e f 200 NLDAS_SH NDAS_SH 150 NAM_SH NARR_SH GLDAS_SH 100 GDAS_SH GFS_SH 50 0 -50 Sensible Heat Flux (W m-2) Sensible Heat Flux (W m-2) 550 400 Bondville, IL 350 OBS_SH OBS_SH-e f Sensible Heat Flux (W m-2) 250 NLDAS_SH 300 NDAS_SH NAM_SH 250 NARR_SH 200 GLDAS_SH GDAS_SH 150 GFS_SH 100 50 0 -50 -100 3 6 9 12 15 18 21 24 3 6 9 12 LST 18 21 NLDAS_SH NDAS_SH NAM_SH 150 NARR_SH GLDAS_SH GDAS_SH 100 GFS_SH 50 0 NAM_SH NARR_SH 300 GLDAS_SH 250 GDAS_SH 200 GFS_SH 150 100 50 0 0 3 6 9 12 15 18 21 24 350 Black Hills, SD OBS_SH OBS_SH-e f 200 NLDAS_SH NDAS_SH 150 NAM_SH NARR_SH GLDAS_SH 100 GDAS_SH GFS_SH 50 0 -50 Sensible Heat Flux (W m-2) 200 NDAS_SH 350 LST Brookings, SD OBS_SH-e f NLDAS_SH 400 24 250 OBS_SH Sensible Heat Flux (W m-2) Sensible Heat Flux (W m-2) 15 LST Ft. Peck, MT OBS_SH-e f 450 -100 0 250 OBS_SH -50 -100 0 Grassland, AZ 500 OBS_SH 300 OBS_SH-e f NLDAS_SH 250 NDAS_SH NAM_SH 200 NARR_SH GLDAS_SH 150 GDAS_SH GFS_SH 100 50 0 -50 -50 0 3 6 9 12 15 18 21 -100 -100 24 0 3 6 9 LST 15 18 21 0 24 NDAS_SH NAM_SH 150 NARR_SH GLDAS_SH 100 GDAS_SH GFS_SH 50 0 OBS_SH-e f 300 NLDAS_SH NDAS_SH 250 NAM_SH NARR_SH 200 GLDAS_SH GDAS_SH 150 GFS_SH 100 50 0 -50 -50 9 12 LST 15 18 21 24 12 15 18 21 Walker Branch, TN OBS_SH Sensible Heat Flux (W m-2) NLDAS_SH Sensible Heat Flux (W m-2) 200 6 9 24 350 Chestnut Ridge, TN OBS_SH OBS_SH-e f 3 6 LST 350 Columbia, MO 0 3 LST 250 Sensible Heat Flux (W m-2) 12 OBS_SH 300 OBS_SH-e f NLDAS_SH 250 NDAS_SH NAM_SH 200 NARR_SH GLDAS_SH 150 GDAS_SH GFS_SH 100 50 0 -50 -100 0 3 6 9 12 LST 15 18 21 24 0 3 6 9 12 LST 15 18 21 24 MAY 2007 avg. LE, NCEP model vs obs 350 OBS_LH 300 OBS_LH-r es NLDAS_LH 250 NDAS_LH NAM_LH 200 NARR_LH GLDAS_LH GDAS_LH 150 GFS_LH 100 50 OBS_LH-e f 300 OBS_LH-r es NLDAS_LH 250 NDAS_LH NAM_LH 200 NARR_LH GLDAS_LH GDAS_LH 150 GFS_LH 100 50 0 0 0 3 6 9 12 15 18 21 24 OBS_LH-r es NLDAS_LH NDAS_LH NAM_LH NARR_LH 50 GLDAS_LH GDAS_LH GFS_LH 0 3 6 9 12 15 18 21 0 24 3 6 9 350 250 OBS_LH-r es 200 NLDAS_LH NDAS_LH NAM_LH 150 NARR_LH GLDAS_LH GDAS_LH 100 GFS_LH 50 OBS_LH-e f 300 OBS_LH-r es NLDAS_LH 250 NDAS_LH NAM_LH 200 NARR_LH GLDAS_LH GDAS_LH 150 GFS_LH 100 50 Latent Heat Flux (W m-2) Latent Heat Flux (W m-2) OBS_LH-e f 15 18 21 24 OBS_LH Black Hills, SD OBS_LH Brookings, SD OBS_LH Ft. Peck, MT 12 LST LST 250 OBS_LH-e f OBS_LH-r es 200 NLDAS_LH NDAS_LH NAM_LH 150 NARR_LH GLDAS_LH GDAS_LH 100 GFS_LH 50 0 0 0 0 3 6 9 12 15 18 21 24 0 3 6 9 12 LST 15 18 21 0 24 450 NLDAS_LH NDAS_LH 300 NAM_LH NARR_LH 250 GLDAS_LH 200 GDAS_LH GFS_LH 150 100 50 0 Latent Heat Flux (W m-2) 350 6 9 12 LST 15 18 21 24 12 15 18 21 Walker Branch, TN OBS_LH 400 OBS_LH-e f OBS_LH-r es 350 NLDAS_LH NDAS_LH 300 NAM_LH NARR_LH 250 GLDAS_LH 200 GDAS_LH GFS_LH 150 100 50 0 3 9 24 450 Chestnut Ridge, TN OBS_LH-e f OBS_LH-r es 0 6 LST 450 OBS_LH Columbia, MO 400 3 LST Latent Heat Flux (W m-2) Latent Heat Flux (W m-2) OBS_LH-e f 100 -50 0 LST Latent Heat Flux (W m-2) OBS_LH Grassland, AZ OBS_LH Bondville, IL-2 OBS_LH-e f Latent Heat Flux (W m-2) Latent Heat Flux (W m-2) Bondville, IL Latent Heat Flux (W m-2) 350 OBS_LH 400 OBS_LH-e f OBS_LH-r es 350 NLDAS_LH NDAS_LH 300 NAM_LH NARR_LH 250 GLDAS_LH 200 GDAS_LH GFS_LH 150 100 50 0 0 3 6 9 12 LST 15 18 21 24 0 3 6 9 12 LST 15 18 21 24 LST verification 07May2006 310 300 LST verification May2006 Mean Using surface fluxes to evaluate land-surface physics formulations and parameters Sensible heat flux (bulk aerodynamic form): H = rcpCh(Tsfc - Tair) Latent heat flux (i.e. Penman-Monteith form): LE = _______________________ D(Rn-G) + rcp(esfc - eair)/ra D + g(1+rs/ra) For a fully-vegetated surface: Ch = exchange coefficient (=1/ra) rs = canopy resistance (inverse canopy cond.) Transpiration processes/parameters: canopy conductance (cm/s) ...e.g., effect of vapor pressure deficit on canopy conductance: Bondville, Ill. flux site JULY 2006 soy beans(C3) corn (C4) current Noah test Noah Vapor pressure deficit (mb) T>20C,SWDN>600W/m2 · Better NLDAS results with new VPD option (next pages) To reduce low LH biases during the Summer Vapor pressure deficit function Using a narrow range of this tends to overestimate the evaporation during wet periods (spring) and underestimate the evaporation during dry periods (summer). SMHIGH and SMLOW BXEXP From Chen et al. 1996 Experimental Design ARM/CART sites • Oklahoma Mesonet sites ARM/CART • CONTROL • TEST: Seasonal LAI Root Fraction Vapor Pressure Deficit Function SIMULATION PERIOD: OCT 1996 - SEP 1999 Averaged over 24 ARM/CART sites CONTROL TEST