Transcript Slide 1
§ 1.6 Properties of Integral Exponents b n Properties of Exponents Exponent Rules b m b n b m n Product Rule When multiplying exponential expressions with the same base, add the exponents. Quotient Rule b m mn b ,b 0 n b When dividing exponential expressions with the same nonzero base, subtract the exponent in the denominator from the exponent in the numerator. Blitzer, Intermediate Algebra, 5e – Slide #2 Section 1.6 Properties of Exponents Exponent Rules Examples q3q5q 2 q352 q10 Product Rule 4a b c 3a c 4 3 a 2 3 6 4 7 2 a 4 b3 c 6 c 7 12a 2 4b3c 67 12a 6b3c13 Quotient Rule z 8 83 5 z z 3 z 18r 5 q 3t 6 18 r 5 q 3 t 6 5 3 3 2 6 4 2 r q t 3 2 4 3 2 4 9r q t 9 r q t 2r 2 q1t 2 2r 2 qt 2 Blitzer, Intermediate Algebra, 5e – Slide #3 Section 1.6 Properties of Exponents The Zero Exponent Rule: If b is any real number other than 0, then b 1 0 Negative Exponent Rule: If b is any real number other than 0 and n is a natural number, then 1 b n b n and 1 n b b n Blitzer, Intermediate Algebra, 5e – Slide #4 Section 1.6 Properties of Exponents Exponent Rules Examples 170 1 Zero Exponent Rule 5x y z 3 2 34 1 1 xq2 Negative Exponent Rule 3 4 13P Q R 5 0 1 xq2 1 1 13Q 4 4 13 3 Q 5 3 5 P R PR Blitzer, Intermediate Algebra, 5e – Slide #5 Section 1.6 Properties of Exponents Exponent Rules Examples 4 x 3 y 6 4 y 6 pq 2 x3 pq 2 Negative Exponents in Numerators and Denominators 2 2 32 43 2 3 3 4 4 4 1152 2 3 3 4 3 x 4 Power Rule d 2 3 34 x d 23 d 6 1 d6 Blitzer, Intermediate Algebra, 5e – Slide #6 Section 1.6 Properties of Exponents Exponent Rules Examples 4x y 3 Products to Powers 2 4 5 2a 4b6 3 4 3 b 18 4 a 2 a 2 3 b 3 b 2 6 3 5 23 a 43 b63 1 12 1 5a12 5 3 a 18 18 2 b 8b 4 Quotients to Powers 3 5 2 3 a 4 5 2 a b 12 4 44 x3 y 2 256 x34 y 24 256x12 y8 2 4 3g 3h 2 3g 3 3g 3 2 7 fh 2 7 f 7 fh 2 2 a 24 a 8 34 12 b b f h 32 g 3 72 2 2 2 2 9 g 32 9g 6 2 22 49 f h 49 f 2 h 4 Blitzer, Intermediate Algebra, 5e – Slide #7 Section 1.6 Simplifying Exponential Expressions Simplification Techniques Examples If necessary, remove parentheses by using the Products to Powers Rule or the Quotient to Powers Rule. 2ab4 24 a4b4 3 173 173 4913 17 2 2 3 23 6 x x x x Q Q7119 Q1349 W W 510 W 50 71 19 If necessary, simplify powers to powers by using the Power Rule. 5 10 Blitzer, Intermediate Algebra, 5e – Slide #8 Section 1.6 Simplifying Exponential Expressions Simplification Techniques Examples H 4 H 16 H 416 H 20 Be sure each base appears only once in the final form by using the Product Rule or Quotient Rule If necessary, rewrite exponential expressions with zero powers as 1. Furthermore, write the answer with positive exponents by using the Negative Exponent Rule V 23 V 2317 V 6 17 V 0 3 2 45X 3Y 4 3 2 1 5 31 12 31 K K 12 Blitzer, Intermediate Algebra, 5e – Slide #9 Section 1.6 Properties of Exponents Of I M P O R T A N CE to note… Be sure you pay special attention to the study tip on the bottom of page 72. This tip will help you avoid common errors that can occur when simplifying exponential expressions. Blitzer, Intermediate Algebra, 5e – Slide #10 Section 1.6