Transcript Document
Free Energy MD and Nanoscale Polymers Lecture notes for Computational Nanotechnogoly and Molecular Engineering Workshop, Pan American Advanced Study Institutes 1/14/2004 Shiang-Tai Lin, Youyong Li, Seung Soon Jang, Prabal Maiti Tahir Çağın, Mario Blanco, and William A. Goddard III Materials and Process Simulation Center, Caltech Free Energy Calculation in Nanotechnology Free Energy is a key parameter in Nanofabrication • Equilibrium structure is determined by free energy – formation of self-assembled monolayers (SAM) – nanoscale patterns in liquid crystals and block copolymers – secondary structures of DNA, RNA • However, “Many of the ideas that are crucial to the development of this area-"molecular shape", the interplay between enthalpy and entropy, the nature of noncovalent forces that connect the particles in self-assembled molecular aggregates-are simply not yet under the control of investigators.” George M. Whitesides (http://www.zyvex.com/nanotech/nano4/whitesidesAbstract.html) NanoStructures Functions Free Energy Weak interactions (vdW, Coulomb, Hb) Outline • How to obtain Free Energies from MD Simulations –Test Particle method –Perturbation method –Nonequilibrium method –Normal mode analysis • A new 2PT approach for efficient Free Energy Estimation –Basic Ideas (with Blanco and Goddard) –Test of method with LJ fluids (with Blanco and Goddard) • Applications of 2PT methods in the study of Dendrimers –Zimmerman H-bond dendrimer (with Jang, Çağın and Goddard) –PAMAM dendrimer (with Maiti and Goddard) –Percec dendrimer (with Li and Goddard) Free Energy Calculation from Molecular Simulations • Test Particle Method (insertion or deletion) •Good for low density systems •Available in the Sorption Module of Cerius2 • Perturbation Method (Thermodynamic integration, Thermodynamic perturbation) •Applicable to most problems •Require long simulations to maintain “reversibility” • Nonequilibrium Method (Jarzinski’s equality) •Obtaining differential equilibrium properties from irreversible processes •Require multiple samplings to ensure good statistics • Normal model Method •Good for gas and solids •Fast •Not applicable for liquids Reference: Frenkel, D.; Smit, B. Understanding Molecular Simulation from Algorithms to Applications. Academic press: Ed., New York, 2002. McQuarrie, A. A. Statistical Mechanics. Harper & Row: Ed., New York, 1976. Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690. From Normal Modes to Free Energy • Total number of normal modes = 3N, N=number of particles For an isolated molecule with N atoms 3 translation, 3 rotation (or 2 for linear molecules, 0 for monoatomic molecules), 3N -6 vibration For a crystal with N particles 3 translation (acoustic modes), 3N-3 vibrational modes • Each vibrational mode can be treated as a harmonic oscillator 1 2 n (n )h Q qHO ( ) exp(β n ) n exp(βh/2) 1 - exp(βh/2) • The partition function is the sum of contributions from HOs ln Q dS ( ) ln q HO ( ) 0 • All the thermodynamic properties are defined ln Q E V0 Tβ 1 T N ,V 1 A V0 β ln Q V0 β ln Q S k ln Q β 1 T N ,V 1 dS ( )W 0 A ( ) Determine Normal Modes from Molecular Simulations •The density of states S() •S()d number of modes between and +d • 0 S ( )d 3N •Determination of S() • The eigenvalues of the Hessian matrix (vibrational analysis, phonon spectrum ) • Covariance matrix of atomic position fluctuations • Fourier transform of velocity autocorrelation function S ( υ) 2 lim C (t )e i 2 πυt dt kT C(t ) v(0) v(t ) The Density of States Distribution S() Solid Gas Liquid Debey crystal S(v) ~2 S ( ) S ( ) S ( ) exponential decay • Singularity at zero frequency • Strong anharmonicity at low frequency regime The 2PT idea: Liquid Solid+Gas solid-like gas-like S ( ) • Decompose liquid S(v) to a gas and a solid contribution • S(0) attributed to gas phase diffusion • Gas component contains anharmonic effects • Solid component contains quantum effects • Two-Phase Thermodynamics Model (2PT) The 2PT Method Lin, S. T.; Blanco, M.; Goddard, W. A. The Two-Phase Model for Calculating Thermodynamic Properties of Liquids from Molecular Dynamics: Validation for the Phase Diagram of Lennard-Jones Fluids. J. Chem. Phys. 2003, 119, 11792. • The basic idea •The DoS S ( ) S gas ( ) S solid ( ) •Thermodynamic properties P dS ( )W s HO P ( ) dS g ( )WPg ( ) 0 • The gas component 0 • VAC for hard sphere gas c HS (t ) 3kT exp( a t ) m a (T , HS , HS ) : frictioncoefficient Gas • DoS for hard sphere gas S HS ( ) 12N a 2 2 2 a 4 gas s0 s 1 0 6 fN S0 N gas fN 2 s0 S HS (0) • Two unknowns (a and Ngas) or (so and f) 12N gas S ( ) f a Determining so and f from MD Simulation • so (DoS of the gas component at =0) • completely remove S(0) of the fluid • s0 S (0), S solid (0) 0 • f (gas component fraction) • T or 0 : f1 (all gas) • : f0 (all solid) • f D(T , ) D0HS (T , ; HS ) • one unknown HS D(T , ) kTS (0) 12 mN D0HS (T , ; HS ) 3 1 kT 1/ 2 ( ) 8 HS 2 m (Chapman- Enskog) Determining HS • HS (hard sphere radius for describing the gas molecules) • gas component diffusivity should agree with statistical mechanical predictions at the same T and • gas component diffusivity from MD simulation D HS (T , f ) kTs0 12m fN • HS diffusivity from the Enskog theory y D (T , f ) D (T , f ; HS HS 0 HS 4 fy ) z ( fy) 1 6 HS 3 1 y y2 y3 z ( y) (1 y) 3 At Last… • A universal equation for f 29 / 2 f 15 / 2 63 f 5 3 / 2 y 7 / 2 63 / 2 f 5 / 2 2 f 2 0 normalized diffusivit y : (T , , m, s0 ) 2s0 kT 1/ 2 1/ 3 6 2 / 3 ( ) ( ) 9N m • Graphical representation 1.0 f or f y 0.8 f fy 0.6 0.4 0.2 0.0 1.E-05 1.E-03 1.E-01 1.E+01 (normalized diffusivity) 1.E+03 Comparison of the 1PT and 2PT methods Run a MD simulation (trajectory information saved) Calculate VAC Calculate DoS (FFT of VAC) Apply HO approximation To S() 1PT thermodynamic predictions Apply HO statistics To Ssolid() Apply HS statistics to Sgas() 2PT thermodynamic predictions Calculate S(0) and Solve for f Determine Sgas(), Ssolid() An Overview of the 2PT Method 5 0 To Phase Behaviors -5 G* -10 -15 T*=1.8 T*=1.4 T*=1.1 T*=0.9 2PT(Q) 2PT(C) -20 DoS 100 90 DoS S(cm) 50 G β 40 30 10 0 0 20 40 60 80 100 frequency v(cm-1) 400 2 S ( υ) lim C (t )e i 2 πυt dt kT 0 -400 -800 0 MD simulations 0.5 1 1.5 time (ps) 2 2.5 C(t ) v(0) v(t ) 3 0.4 0.6 * 1 0.8 1 dS ( )W 0 20 800 0.2 60 VAC 1200 C (t) 0 70 1600 -30 80 From MD Simulations -25 A 1.2 ( ) Test the 2PT Method Using the LJ System • Intermolecular potential Lennard-Jones Potential V (r ) 4 ( )12 ( ) 6 r r V(r) r= 0 - r T - diagram for Lennard Jones Fluid • Phase diagram ●stable – critical point 1.8 Tc* 1.316 0.006 T 0.69 ●unstable 1.4 c* 0.304 0.006 – triple point Gas T* Liquid 1.0 * tp (T*=kT/*=3) ●metastable Supercritical Fluid Solid 0.6 0.0 0.4 * 0.8 1.2 VAC and DoS of LJ Fluids Velocity Autocorrelation Density of States 2 S ( υ) lim C (t )e i 2 πυt dt kT C(t ) v(0) v(t ) 1600 100 800 C (t) 90 80 70 DoS S(cm) 1200 400 0 gas liquid solid 60 50 40 30 gas liquid solid -400 -800 0 0.5 1 1.5 time (ps) 2 2.5 20 10 0 3 0 20 40 60 frequency v(cm-1) 80 100 2PT DoS Decomposition • Examples liquid gas 1200 30 1000 25 solid 35 30 25 600 gas-like solid-like 400 0 0 5 solid-like gas-like 15 10 5 [cm-1] 20 10 200 0 solid-like gas-like 15 S ( ) [cm] 20 S ( ) [cm] S ( ) [cm] 800 10 5 0 0 50 100 [cm-1] 150 0 50 100 [cm-1] 150 Pressure and Energy Total Energy Pressure 3 18 T*=1.8 16 T*=1.4 14 T*=1.1 1 12 T*=0.9 0 MD 10 P* -1 E* 8 -2 6 -3 4 -4 2 -5 0 -6 -2 -7 0 0.2 0.4 0.6 * 0.8 T*=1.8 T*=1.4 T*=1.1 T*=0.9 MD 2PT(Q) 2 1 1.2 0 0.2 0.4 0.6 * Pressures and MD Energies agree with EOS values Quantum Effect (ZPE) most significant for crystals (~2%) 0.8 1 1.2 Entropy 2PT model 1PT 20 20 T*=1.8 T*=1.4 T*=1.1 T*=0.9 2PT(Q) 2PT(C) T*=1.8 18 gas 16 T*=1.4 18 T*=1.1 16 T*=0.9 14 S* 14 1PT(Q) S* 12 crystal 10 8 12 10 8 6 6 liquid 4 4 0 0.2 0.4 0.6 * 0.8 1 • Overestimate entropy for low density gases • Underestimate entropy for liquids • Accurate for crystals 1.2 0 0.2 0.4 0.6 * 0.8 1 1.2 • Accurate for gas, liquid, and crystal • Accurate in metastable regime • Quantum Effects most important for crystals (~1.5%) Gibbs Free Energy 1PT 2PT model 5 5 liquid 0 0 -5 G* -5 -10 crystal G* -15 -10 -15 T*=1.8 -20 T*=1.4 T*=1.1 -20 -25 T*=0.9 1PT(Q) -25 gas -30 T*=1.8 T*=1.4 T*=1.1 T*=0.9 2PT(Q) 2PT(C) -30 0 0.2 0.4 0.6 * 0.8 1 • Underestimate free energy for low density gases • overestimate entropy for liquids • Accurate for crystals 1.2 0 0.2 0.4 0.6 * 0.8 1 1.2 • Accurate for gas, liquid, and crystal • Accurate in metastable regime Why does 2PT work? P dS ( )W s 1200 HO P ( ) dS g ( )WPg ( ) 0 HS fy = 0.036 0 HS fy = 0.309 4 gas 1000 WS( ) 800 S( ) [cm] 5 600 3 2 400 QHO 1 200 CHO 0 0 0 2 4 6 [cm-1] 8 10 0 50 100 150 [cm ] -1 30 liquid 25 S( ) [cm] 20 • 1PT overestimates Wsgas for gas for modes < 5 cm-1 • 1PT underestimates Wsgas for liquid for modes between 5 and 100 cm-1 15 10 5 • 2PT properly corrects these errors 0 0 50 100 [cm-1] 150 Convergence of 2PT 15.5 14.5 • For gas, the entropy 13.5 2PT(Q) 2PT(C) 12.5 converges to within 0.2% with MBWR EOS 11.5 S* gas (*=0.05 T*=1.8) 10.5 • For liquid, the entropy liquid (*=0.85 T*=0.9) 9.5 2500 MD steps (20 ps) 8.5 converges to within 1.5% with 7.5 2500 MD steps (20 ps). 6.5 100 1000 10000 MD steps 100000 1000000 2PT for Melting and Solidification • Initial amorphous structure is used in the cooling process • The fluid remains amorphous in simulation even down to T*=0.8 (supercooled) • The predicted entropy for the fluid and supercooled fluid agree well with EOS for LJ fluids metatstable supercritical solid unstable fluid Simulation conditions 2.0 supercritical fluid 1.8 1.6 1.4 T* 1.2 1.0 0.8 solid 0.6 0.00 0.40 0.80 8 1.20 starting with amorphous liquid • Initial fcc crystal is used in the heating process • The crystal appears stable in simulation even up to T*=1.8 (superheated) • The predicted entropies for the crystal and superheated crystal agree well with EOS for LJ solids Entropy 7 6 S* liquid (EOS) 5 solid (EOS) 4 starting with fcc crystal heating cooling classical 3 0.80 1.20 1.60 T* 2.00 Extension to Mixtures LJ Mixtures at T*=0.85 Combination Rules: ij= lij ( ii+ jj)/2 ij= bij ( ii+ jj)1/2 22/11=0.80 22/11=0.85 l12=0.95 b12=0.70 2PT Literature x1(I) ~0.02 0.04 x1(II) ~0.79 0.84 Efficiency of 2PT for Mixtures 100 ps 400 ps T*=0.95 P*=0.125 2.0E-04 1.5E-04 1.5E-04 1.0E-04 400ps 100ps 5.0E-05 Gmix/RT 1.0E-04 5.0E-05 Gmix/RT T*=0.95 P*=0.125 2.0E-04 0.0E+00 0.0E+00 -5.0E-05 -5.0E-05 -1.0E-04 -1.0E-04 -1.5E-04 -1.5E-04 -2.0E-04 -2.0E-04 -2.5E-04 0 -2.5E-04 0 0.2 0.4 0.6 0.8 0.2 1 0.4 0.6 0.8 1 x(Ar) x(Ar) 25 ps 12.5 ps T*=0.95 P*=0.125 T*=0.95 P*=0.125 2.0E-04 2.0E-04 1.5E-04 1.5E-04 25ps 1.0E-04 5.0E-05 Gmix/RT Gmix/RT 12.5ps 1.0E-04 5.0E-05 0.0E+00 -5.0E-05 -1.0E-04 0.0E+00 -5.0E-05 -1.0E-04 -1.5E-04 -1.5E-04 -2.0E-04 -2.0E-04 -2.5E-04 0 0.2 0.4 0.6 x(Ar) 0.8 1 -2.5E-04 0 0.2 0.4 0.6 x(Ar) 0.8 1 An Overview of the 2PT Method 5 0 To Phase Behaviors -5 G* -10 -15 T*=1.8 T*=1.4 T*=1.1 T*=0.9 2PT(Q) 2PT(C) -20 DoS 100 90 DoS S(cm) 50 G β 40 30 10 0 0 20 40 60 80 100 frequency v(cm-1) 400 2 S ( υ) lim C (t )e i 2 πυt dt kT 0 -400 -800 0 MD simulations 0.5 1 1.5 time (ps) 2 2.5 C(t ) v(0) v(t ) 3 0.4 0.6 * 1 0.8 1 dS ( )W 0 20 800 0.2 60 VAC 1200 C (t) 0 70 1600 -30 80 From MD Simulations -25 A 1.2 ( ) Summary of 2PT 1. 2. 3. 4. 5. 6. 7. Thermodynamic and transport properties are determined simultaneously. Only short simulation times (20 ps) are needed to obtain high accuracy. For a system with N particles, we expect 2PT to be N times faster than methods such as particle insertion and thermodynamic integration. The efficiency of 2PT does not deteriorate with increasing density (a severe limitation in most other techniques). The properties are obtained under real equilibrium conditions (no perturbation in the simulation itself). Zero point energy and corrections for quantum effects are included. 2PT can be used to determine the properties in metastable and unstable regimes. 2PT could also be used for nonequilibrium systems to estimate effects of transient effects, reaction, and phase transitions, since it is only necessary to have stabilities over time scales of ~20 ps. Application: Zimmerman H-bond Dendrimers Dendrimer study on Zimmerman system Initiative: Science, 271, 1095 (1996) R= H O O g1 g2 g3 g4 O O O OO O O O O O O O H O O O O O O O O O R O O O O O O O O O H N O O O O O O O OO O OO O O O O O O O O O O O O O O O O O O O O H O dendrons core Experimental Observations HO O O OH • Aggregates found in non-polar solvents such as CH2Cl2 and CHCl3 but not in polar solvents such as THF and DMSO OH O HO O HO O O OH OH O HO O • Circular and ladder coexist in lower generations (gen 1) • Circular type is dominant for generations 2, 3 and 4 • The generation dependent stability behavior is attributed to the subtle interplay between H-bond, vdW and steric repulsions O HO OH O O H O OH O O HO OH O O H O OH O OH O H O O HO O O OH OH O H O O HO O O OH circular O HO OH O HO O H O O OH O O HO OH O O H O OH O O H O linear O O H H O O O O H H O O OH O H O O Application: Zimmerman H-bond Dendrimers • Relative stability determined by the free energy differences is in consistent with experimental observations • Linear and circular forms are energetically similar • Stability of Zimmerman H-bond mediated dendrimers are dominated by entropic effects • Opens up possibility to design thermodynamically stable suprastructures • This method is potentially useful for study other supramolecules such as Protein, DNA, etc Energy Entropy Free Energy Application: PAMAM dendrimers NH 2 NH 2 EDA core NH NH 2 O repeating (monomer) unit Generation 3 Applications of PAMAM dendrimer • Catalysts • Environment applications (metal encapsulation) • Medical applications (drug delivery, gene therapy) • Surface active agents • Viscosity modifier • New electrical materials Application: PAMAM dendrimers Water molecules in PAMAM Free Water Domain Surface Water Domain Inner Water Domain Schematic Atomistic • Number of water molecules solution overall inner surface free SESA (Å2) high pH 9406 376 1014 1440 10642±185 neutral pH low pH 8948 12977 547 747 1328 1729 1806 2472 13216±198 18526±723 Application: PAMAM dendrimers high pH neutral low pH -6 E (kcal/mol) -7 • Engetically slightly less favored for water at the PAMAM surface • Entropically less favored for water inside PAMAM • Entropically slightly less favored for water at PAMAM surface • Surface and Inner Waters are in a higher free energy state compared to the bulk -8 -9 -10 -11 -12 inner surface free water location high pH neutral low pH 6 4 3 2 -13 -14 -15 1 -16 0 -17 inner surface water location free neutral low pH -12 A (kcal/mol) TS (kcal/mol) 5 high pH -11 inner surface water location free Application: Percec Dendrimer Crystals 1500 Free energy profile over volume at 277K 1450 A(kJ/mol/dendron) 1400 1350 1300 1250 a. Condense phase 1200 Critical pressure: 0.033GPa 1150 1100 b. Isolated Micelle phase 1050 AA15 1000 0 2000 4000 6000 8000 10000 12000 Volume (A^3) 14000 16000 18000 20000