Transcript HW 2 Helper
HALE UAV Preliminary Design SAURON AERSP 402B Spring 2014 Team: NSFW Nisherag Gandhi Thomas Gempp Doug Rohrbaugh Gregory Snyder Steve Stanek Victor Thomas Mission Statement To design a High Altitude / Long Endurance (HALE) UAV using alternative fuel sources to support homeland security efforts with a concentration in long term border security. Design Changes v1 v4 v2 v5 v3 v6 Sauron v7 Design Changes – Wing and Tail Design Changes – Landing Gear Dimensions Parameter Wing Tail Airfoil SM701 Jouk0015 Span (ft.) 128.6 18.0 Reference Chord (ft.) 4.0 2.5 Area (ft.2) 557.5 45.0 Cruise CL 0.66 0.09 Span Efficiency 1.01 Max CL 1.4 Power Generated (kW) 16.93 Aspect Ratio 29.6 Neutral Point Location (ft.) 13.4 C.G. Location (ft.) 13.2 Wing/Tail Lift Distribution Structures – Materials • • • • • • • HexPly M91 - Epoxy Matrix for primary aerospace structure High residual compression strength after impact (CAI) Supports automated manufacturing HexTow IM10 - Carbon Fiber 12k tow Suitable for weaving, prepregging, filament winding, braiding, and pultrusion Enhanced tensile properties Highest commercially available tensile strength * Avg. cost: $45/lb. M91/IM10 Structures – Materials HexTow IM10 Carbon Fiber # of Filaments 12000 Filament Diameter (microns) 4.4 Tensile Strength (MPa) 6964 Tensile Modulus (GPa) 310 Strain (%) 2.0 Density (g/cm3) 1.79 Epoxy-Fiber (Prepreg) Combination (M91/IM10) Theoretical Values Cured Ply Thickness (in) ~ 0.0072 Fiber Volume (%) ~ 58.9 Laminate Density (g/cm3) ~ 1.4 Laminate Modulus (GPa) ~ 200 Tensile Strength (MPa) ~ 3620 Wing – Spar Design Wing – Weight and Lift Distribution Wing – Moment and Stress Wing – Deflection Wing Deflection Analysis H &V Stabilizer Spar Design Horizontal Stabilizer – Lift Distribution H. Stabilizer – Moment and Stress H. Stabilizer – Wing Deflection Vertical Stabilizer – Weight and Lift Distribution V. Stabilizer – Moment and Stress V. Stabilizer - Deflection Weight Breakdown Aircraft Part Empty Weight (lbs) Parameter Empty Weight (lbs) Wing 126.89 Total Empty Weight 404.44 Fuselage 32.77 Battery 180.00 Horizontal Stabilizer 10.24 Vertical Stabilizer 3.98 Payload 250.00 Solar Cell 87.53 Total 834.44 Wing Spar 70.38 Vertical Stab Spar 0.71 Horizontal Stab Spar 1.87 4 Motors 16.00 Fuselage Formers 15.00 Gear System 40.00 Total Empty Weight 404.44 Control Surfaces Aileron Control Surface Area: 3% Pcruise|61k ft = 13.8 deg/sec Pstall|61k ft= 11.5 deg/sec Required Aileron Deflection =10° Elevator Control Surface Area: 46.7% Pitch Rate= 9 deg/sec Required Elevator Deflection= -2.6° Lift Coefficient, CL Elevator Deflection (°) 0.1 1.55 0.4 0.90 0.66 0.25 1.0 -0.74 1.4 -2.14 Rudder Control Surface Area: 42.9% Rudder Deflection: 20° Maximum Sidewash: 10° Max Crosswind: 12.5 ft/s Control Surface Demo Airfoil Selection Wing Airfoil H&V Stabilizer Airfoil Updated Drag Analysis Updated Drag Analysis Sea Level 45,000 feet 61,000 feet 79,000 feet Stall Speed (ft/s) 37.0 83.9 122.3 188.7 Cruise Speed (ft/s) 44.4 100.7 146.8 226.5 Max Speed (ft/s) 113.0 191.5 245.3 294.0 Total Drag (lbs) 18.4 20.3 22.5 26.9 Power Required (kW) 1.05 2.7 4.3 8.1 1,129,663.40 626,856.80 429,692.6 274,504.6 0.0087 0.01 0.0105 0.0125 Oswald’s Efficiency 0.76 0.73 0.69 0.63 Max L/D 46.7 42.4 38.2 31.9 Reynolds’ Number CDo Updated Power Analysis 48 hour UAV Power Plan 16 Previous Power Calculation Current Power Calculation 14 Power (Kilowatts) 12 10 8 6 4 2 0 0 5 10 15 20 25 Time (hours) 30 35 40 45 50 Takeoff Parameter Ground Roll [ft] Vtakeoff [ft/s] dab|35ft [ft] dab|50ft [ft] Dtotal|35ft [ft] Dtotal|50ft [ft] Thrust [lbs] Sea Level Denver Afghanistan Landing Parameter Va [ft/s] γa [deg] Radius [ft] Flare Height [ft] Flare Speed [ft/s] da35ft [ft] da50ft [ft] df [ft] VTD [ft/s] Thrust [lbs] Sea Level Denver Afghanistan Constraint Diagram Original Current Cost Analysis Fixed Costs for 5 Developmental Aircraft: – Engineering Costs: $29,869,717.35 – Flight Test Ops: $17,638,487.67 – Tooling: $4,567,827.99 Pricing Pricing Summary 1 10 100 Design Aircraft 500 1000 5 Engineering Costs $ 29,869,717.35 Flight Test Ops $ 17,638,487.67 Tooling Costs $ Manufacturing Costs $ 3,411,149.77 Quality Control Costs $ Total Materials Costs 4,567,827.99 $ 14,924,534.27 $ 65,298,136.52 $ 183,206,365.99 $ 285,693,781.52 490,688.06 $ 2,146,868.71 $ 9,393,025.19 $ 26,353,922.21 $ $ 889,569.58 $ 2,223,923.96 $ 15,567,467.69 $ 74,872,106.51 $ 149,002,905.04 Design Materials Costs $ 741,307.99 $ 741,307.99 $ 741,307.99 $ 741,307.99 Production Materials Costs $ 148,261.60 $ 1,482,615.97 $ 14,826,159.71 $ 74,130,798.53 $ 148,261,597.05 $ 41,096,561.54 741,307.99 Total Frame Costs $ 60,725,386.10 $ 75,229,305.63 $ 146,192,608.09 $ 340,366,373.41 $ 531,727,226.80 Minimum Price Per UAV $ 60,725,386.10 $ $ $ $ 7,522,930.56 1,461,926.08 680,732.75 * +$2M per for custom sensory packages 531,727.23 Comparison to Competitors • RQ-1/MQ-1 Predator – Unit Cost: $4.03M – 360 Built • MQ-9 Reaper – Unit Cost: $16.9M – 104 Built • RQ-4 Global Hawk – Unit Cost: $131.4M – 42 Built • Solara 50/60 – Unit Cost: $1-2M – N/A Built 14 Days ‘Til Graduation Questions? Double Camera Summary Value Parameter Aspect Ratio Empty Weight Ratio Battery Weight Ratio Battery Charge Density (watt-hr./kg) Solar Cell Efficiency L/D 2 Wing Loading (lbs./ft. ) Takeoff Weight Payload (lbs.) 2 Wing Area (ft. ) Proj. Wing Span (ft.) Ref. Chord Length (ft.) Oswald’s Efficiency Thrust to Weight Ratio Parameter Stall Speed (ft./sec) Cruise Speed (ft./sec) Total Drag (lbs.) Max L/D Power Required to Cruise (kw) CL at Cruise Reynolds’s Number at Cruise Sea Level 45,000 ft. 61,000 ft.