Transcript Slide 1
PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine Ryan Nevin, Professor Rolf Reitz and Manuel Gonzalez Funding Sponsors: Caterpillar and US Department Of Energy Solenoid Driven IVA System 0.20 6 0.158mm 0.35 0.3 60 0.25 40 0.2 0.15 20 0.1 0 0.05 -20 0 0 5 10 15 20 Factor Speed (rev/min) Fuel Flow (kg/hr) SOI (CA-BTDC) IVC Timings (CA-BTDC) EGR Rate % Equivalence Ratio Fuel Type Value 1737 3.50 (30% Load) 55 143, 115, 100, 85 25 0.2 to 0.3 ULS 2007 Diesel 25 -180 4mm Lift -150 -120 -90 IVC143 P IVC115 P IVC85 P IVC70 P IVC143 HR IVC115 HR IVC85 HR IVC70 HR 0.25 IVC143 NAHRR 3.00 70°BTDC 85°BTDC 2.50 IVC143 IVC115 IVC100 IVC85 IVC85-CAM 193 207 207 236 207 207 221 221 248 221 221 235 234 262 241 --248 ----259 0.2 0.15 85 Later IVC 70 0.1 0.05 85 115 143 130 115 0 0 0.5 1 1.5 2 2.5 3 3.5 NOx (g/kW-hr) 2007 ULS Fuel Pre-2007 Fuel IVC85 CAM 10 20 30 40 IVC130 IVC70 IVC115 IVC100 IVC85 IVC60 0.15 -30 0.50 -25 -20 -15 0.00 -10 -5 0 5 10 CA-ATDC -0.50 -190 -175 -160 -145 -130 -115 -100 -85 4mm Lift -70 1.5mm Lift Boost Increase 0.02 0.015 0.01 0.005 0 0.5 1 1.5 2 2.5 IVC143 IVC85 2010-NTE IVC115 IVC85-CAM IVC100 2007 • NOx decreases with IVC as well as intake pressure increase since intake air acts as a diluent • PM decreases with IVC by equivalence ratio increasing, and the necessary temperatures for oxidation are met IVC143 IVC130 IVC70 IVC60 IVC115 3 0.15 1 0.8 0.6 0.4 0.2 0 -160 0.1 0.05 0 -145 -130 -115 -100 -85 -70 -55 IVC100 IVC85 PM • NOx decreases with lower in-cylinder temperatures, while PM increases due to less available oxygen to oxidize soot • Late IVC (i.e. 60°BTDC) is capable of suppressing combustion 2010 Emissions Search Factor Speed (rev/min) Fuel Flow (kg/hr) EGR % SOI (CA-BTDC) IVC Timings (CABTDC)Temperature (K) Intake 0.025 0.2 NOx 0 1.00 0.25 0.1 130°BTDC 1.50 2 1.8 1.6 1.4 1.2 IVC (CA-ATDC) 0.05 2.00 0.25 70 0 115°BTDC NOx (g/kW-hr) Intake Pressures (kPa) Tested -10 -60 1.5mm Lift 100°BTDC 0 CA-ATDC 100 *** Pressure and NAHRR curves shown are of 2007 ULS Diesel fuel; combustion of fuels were similar -210 IVC Timing and Intake Pressure Sweeps 80 PM (g/kW-hr) • Average decrease of 50% in PM emissions by using 2007 ULSD over pre-2007 #2 diesel fuel • Although enough oxygen is being entrained into the cylinder, the soot increases after a certain IVC timing since the combustion temperatures drop below necessary oxidizing temperatures -240 IVC143 0.4 -5 -270 0.2 128° 0.45 -10 -300 CA ATDC 120 -15 -330 3.50 Preliminary testing found increased valve lift provided better combustion phasing -20 CA-ATDC 4.00 0.5 -20 -30 143°BTDC 4.50 140 -25 0 IVC143 NAHRR Equivalence Ratio 5.50 CA ATDC EVC = -355 deg ATDC IVC = -143 deg ATDC EVO = 130 deg ATDC IVO = 335 deg ATDC Hydraulically Driven Electronically Controlled Unit Injector (HEUI 300B) Up to 150MPa 40 PM (g/kW-hr) Quiescent 60 20 1.00 0 -0.50 -360 100 Pressure (bar) Value 1737 3.55 (30% Load) 4.47 0 55 7.00 2.50 2.44 liters Constant A/F Ratio IVC Sweep with Different Diesel Fuels Factor Speed (rev/min) Fuel Flow (kg/hr) Air Flow (kg/min) EGR Rate % SOI (CA-BTDC) 8.50 80 Value 1737 3.25 (25% Load) 184 55 0 Value 1737 3.0 (25% Load) 40 55 143, 85 (Solenoid) 305 • NOx decreased by factor of 2.5 solely through late IVC • 2010 NTE NOx and PM levels met through lowering temperature and increasing equivalence ratio through use of late IVC timing Run Intake Pressure (kPa) Intake Flowrate (kg/min) IVC (CA-ATDC) NOx (g/kW-hr) HC (g/kW-hr) PM (g/kW-hr) Equivalence Ratio Φ 3 6 9 184 184 172 2.52 2.03 1.86 -143 -85 -85 0.832 0.339 0.239 0.932 1.4232 1.6085 0.0103 0.0206 0.018 0.265 0.2886 0.3391 University of Wisconsin Engine Research Center 0.025 6 8 0.02 9 0.015 0.01 3 0.005 0 0 0.2 0.4 0.6 0.8 1 NOx (g/kW-hr) Case 3 (IVC143) Case 6 (IVC85) Case 9 (IVC85) 2010-NTE Case 8 (IVC85) 140 0.4 120 0.35 0.3 100 0.25 80 0.2 60 0.15 40 0.1 20 0.05 0 0 -30 -20 -10 0 10 20 30 CA ATDC IVC143 (Case 3) P IVC85 (Case 6) P IVC85 (Case 9) P IVC143 (Case 3) HR IVC85 (Case 6) HR IVC85 (Case 9) HR 40 NAHRR Injection Pressure Nozzle Holes Nozzle Hole Diameter Spray Angle 70°BTDC 10.00 4.00 Valve Lift (mm) Injector Type 85°BTDC 130°BTDC 100 NOx (g/kW-hr) 16.1 : 1 100°BTDC PM (g/kW-hr) 137.2 mm x 165.1 mm PM (g/kW-hr) Valve Train (4 valve) 115°BTDC 11.50 Mexican Hat with Sharp Edge Crater Piston Pressure (bar) 14.50 13.00 Factor Speed (rev/min) Fuel Flow (kg/hr) Intake Pressure (kPa) SOI (CA-BTDC) EGR Rate % 120 16.00 Valve Lift (mm) Bore x Stroke Compression Ratio Displacement Combustion Chamber 140 Valve Lift Curves Caterpillar 3401 SCOTE (Single Cylinder Oil Test Engine) - single cylinder - direct injection - 4 valve Engine Baseline IVC Sweep Pressure (Bar) Experimental Setup