Transcript Document
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005 Index 1. Motivation 2. Previous status 3. Current system setup 4. Calibration 5. Background data analysis 6. Future plan Motivation Low mass Dark Matter candidate search - Low energy threshold necessary - Use 5g of prototype Ge detector ( plan to upgrade up to 1 kg ) 5g Ge 1cpd Expected threshold: ~100eV Y2L Underground Lab Depth Minimum 700 m Temperature 20 ~ 25 oC Humidity 35 ~ 60 % Rock contents 238U less than 0.5 ppm 232Th 5.6 +/- 2.6 ppm K2O 4.1 % Muon flux 4.4 x 10-7 /cm2/s Neutron flux 8 x 10-7 /cm2/s 222Rn in air 2 ~ 4 pCi/liter Previous DAQ Setup by He Dao • DAQ: 4 channels SR=25MHz, 8bit 100 us window GPIB interface Three typical signal: HPGe High gain (0~7keV) HPGe Low gain (0~50keV) CsI(Tl) channel (charge signal) HPGe & CsI Calibration HPGe calibration Source: Fe-55 (5.9, 6.5 keV) Target: Ti (4.5, 4.9 keV) by He Dao CsI calibration Source : Na-22 (0.511 & 1.275MeV) Mn-54 (0.835MeV) Energy threshold by He Dao HPGe detector threshold CsI (Tl) detector threshold HPGe Threshold: 265eV CsI Threshold: 50keV Background level and veto efficiency High gain channel by He Dao Low gain channel Ge signal beyond threshold vetoed by CsI signal: (22.1 days data) Originally: 416+764 = 1180 events After veto: 357+456 = 813 events (270 events in 10.29keV peak) Background level: 813/(1909350/3600/24)/0.005/55 = 133 counts/(day*Kg*keV) Efficiency = 1 - 813/1180 = 31.1% PSD for HPGe noise reduction Blue: calibration data Red: background data Time region 400 ~ 2000 (40ns/bin) At A i i t i i i Total window: 80us, 2000bin (the best time range for discrimination) Current system setup • ULE-Ge detector: – H.V.: -500V – Gain: 20x – Shaping time: 6 us – Range: 0~100keV • CsI detector: – H.V.: -1300V – Gain: 100x • N2 flow: 1 liter/min New DAQ system • DAQ device: 4-channel FADC SR=64MHz, 12bit 64 us window USB2.0 interface Typical signals: HPGe High gain (0~9keV) HPGe Low gain (0~100keV) CsI(Tl) channel (current signal) HPGe high gain channel calibration Gain shift: Date: Sep.6th~13th Source: Fe-55 5.9keV peak Equation: height e p 0 p1time( hour ) p2 p0 4.20955e 00, p0 4.40426e 03 p1 1.98411e 02, p1 1.98459e 04 p 2 2.23065e 03, p2 2.20358e 01 50hours For stabilization: 10 days Amplitude of gain shift ~ 2.5% (7 days) HPGe high gain channel calibration Structure of HPGe detector The carbon window will stop the particles whose energy is lower than about 2keV. HPGe high gain channel calibration Source: X-ray generator (AMPTEK INC.) Polyelectric crystal (LiTaO3) is used to generate electrons that produce X-ray in the target material (Cu). Target: Ti (4.5, 4.9 keV) Target: CsI (4.3, 4.6, 5.3 keV) HPGe high gain channel calibration Source: X-ray generator (internal peaks) peak Energy (keV) σ (keV) Expected element Expected energy (keV) ΔE/ σ A 1.680±0.0139 0.074 Ta (Ma) 1.702 0.2973 B 2.7519± 0.0036 0.0586 Ru (L) 2.71785 0.5815 *red: we cannot explain the source of the element polyelectric crystal (LiTaO3) HPGe high gain channel calibration Peaks: Ta, Ca, Cs, Ti, Mn, Fe, Cu X-ray After gain correction offset 117.7eV 2 ndf 12.23 HPGe low gain channel calibration Source: Am-241 Source: Cd-109 Np L-series X-ray: 13.9257, 16.8400, 17.7502, 20.7848 (keV) Am alpha decay: 59.5412 (keV) Ag K-series X-ray: 21.9903, 22.16292, 24.9424, 25.463 (keV) HPGe low gain channel calibration Peaks: Np (L X-ray), Ag (K X-ray), Am (alpha decay gamma) offset 0.0694keV 2 ndf 20.67 CsI (Tl) channel calibration Gamma energy: Cd-109 (Ag X-ray): 22.577 keV Am-241: 59.5412 keV U-238 (Th-234): 92.6 keV Co-57: 123.66 keV offset 1.397keV 2 ndf 1.99972 Background data analysis Only 5.33 days’ data HPGe energy spectrum High gain channel Low gain channel ( 0 ~ 9 keV ) ( 0 ~ 100 keV ) Background data analysis HPGe threshold Threshold: 260eV CsI (Tl) PSD for noise reduction Panorama Detail I t t I i i i vs energy (keV ) i i Blue: calibration file (U-238) Red: background file Background data analysis Background level and veto efficiency High gain channel Low gain channel Veto efficiency: 191/436=43.81% Counting rate: (436-191)/100/0.005/5.326≈92cpd Future plan 1. PSD of HPGe high gain channel for noise reduction — to reduce the threshold 2. Time coincidence relation between HPGe and CsI — improve the discrimination for Compton veto events 3. Simulation and shielding for neutron — to reduce the background level