Transcript Slide 1
Lecture 7 Molecular Bonding Theories 1) Valence Shell Electron Pair Repulsion (VSEPR) theory Simple theory for qualitative prediction of geometry of polyatomic species 1) Draw a reasonable Lewis structure. Count lone pairs and atoms directly attached to the central atom (N). 2) Point lone pairs and bonds at the central atom (A) to the vertices of a polygon or polyhedron. Start from the most symmetrical shapes shown below for 2 < N < 8 (B = an atom or a lone pair): Non-planar arrangements (N = 4, 5, 6, 7, 8): Linear or planar arrangements (N =2 or 3): B B A B linear A B B trigonal planar B B B A B B tetrahedron B A B B B trigonal bipyramid B B A B B B B octahedron B B B B B A A B B B B B B B B pentagonal bipyramid tetragonal antiprysm B B 3) Consider distortions. Distortions of an initially more symmetrical shape are due to the fact that: • • • Lone pairs need more space than bonds. Multiple bonds need more space than single bonds. Bonds formed with more electronegative elements occupy less space. 4) Smaller “objects” will tend to occupy axial positions in trigonal bipyramids and equatorial positions in pentagonal bipyramids. 5) For 4th and higher row elements one lone pair tends to be stereochemically inactive. 2) Most common molecular shapes Formula Lone pairs Example Geometry Formula Lone pairs Example Geometry AB2 0 BeH2 Linear AB5 0 PF5 Trigonal bipyramid 1 CH2 Bent 1 2 H2O Bent IF5 Tetragonal pyramid 3 XeF2 Linear 0 WF6 Octahedral 0 BF3 Trigonal planar 1 XeF6 Distorted octahedral 1 NH3 Trigonal pyramid AB7 0 IF7 Pentagonal bipyramid AB8 0 ZrF84- Tetragonal antiprism 1 Mo(CN)84- Trigonal dodecahedron 0 ReH92- Tricapped trigonal prism AB3 2 AB4 AB6 T-shaped IF3 - Tetrahedral 0 BH4 1 SF4 Butterfly 2 XeF4 Square planar H C H O H H H F F Xe I F F F N H H F S F F F F F AB9 Xe F F F F F I F F H H H H H Re H H H H trigonal dodecahedron 3) Concept of hybridization • Describes geometry of polyatomic species ABx, but predicts degeneracy that does not exist. • Assumes that before an atom A forms x s-bonds, x non-equivalent atomic orbitals yat combine to build a set of the same number x of equivalent hybrid orbitals, yhyb. Similarly hybrid orbitals for p-bonding can be formed. Orbitals suitable for the combination can be found by applying the group theory. • Each hybrid orbital yhyb, j is a linear combination of atomic orbitals, yat, i. y hyb, j cijy at ,i i The probability to find an electron on an j-th hybrid orbital yhyb, j • y • 2 hyb, j dv c y at ,i dv c 1 2 ij 2 y at , jy at ,k dv 0; y at , j dv 1 2 2 ij since The probability to find an electron on an i-th atomic orbital yat, i cij2 1 i i j 4) sp-Hybrid orbitals • Linear molecules AB2 (BeH2). sp-hybridization. yhybcs1ys + cp1ypx ys ypx x x x yhybcs2ys - cp2ypx 2 atomic orbitals 2 hybrid orbitals • Calculating the coefficients cij: cs12 + cs22 = 1 cP12 + cP22 = 1 cS1 = cS2 = (1/2)1/2 cP1 = cP2 = (1/2)1/2 5) Concept of hybridization. sp2-Hybrid orbitals • Trigonal planar molecules AB3 (BF3). sp2- or d2s-hybridization. d2s sp2 yhyb ypy y yhyb ypx y y dx xy y ys y dx y dx2-y2 yd ys y xy yhyb yd yhyb x x x 3 atomic orbitals • 3 atomic orbitals 3 1 y yhyb 2 2 + 0ypx + 2y py 3 yhyb, 2 = 1 y 3 s + 1 y 2 px - 1 y 6 py yhyb, 3 = 1 y 3 s - 1 y 2 px - 1 6 ypy 3 3 hybrid orbitals Calculating the coefficients cij (sp2; for d2s use dxy instead of px and dx2-y2 instead of py): 1 y 3 s yhyb 1 x 3 hybrid orbitals yhyb, 1 = 2 2 y 6) dsp2-Hybrid orbitals • Square planar molecules AB4 ([PtCl4]2-). dx2-y2sp2- or dx2-y2dz2p2-hybridization. yhyb yhyb ys ypy y ypx x yhyb yhyb ydx2-y2 y x y 4 hybrid orbitals 4 atomic orbitals • Calculating the coefficients cij: yhyb, 1 = 1 y 2 s + 0 ypx + yhyb, 2 = 1 y 2 s + yhyb, 3 = 1 ys 2 + 0 ypx - yhyb, 4 = 1 y 2 s - 1 2 1 2 1 2 ypy + ypx + 0 ypy 1 2 ypy + ypx + 0 ypy - 1 2 ydx2-y2 1 y 2 dx2-y2 1 ydx2-y2 2 1 y 2 dx2-y2