Transcript T(k)
Computational Solid State Physics 計算物性学特論 第10回 10. Transport properties II: Ballistic transport Electron transport properties le: electronic mean free path lφ: phase coherence length λF: Fermi wavelength Tunneling transport IL Current in one-dimension I L 2e f [ ( k ), L ]v ( k )T ( k ) UL dk dk d d 1 v f [ ( k ), L ]v ( k )T ( k ) UL 2e h 2 d I L 2e dk f [ ( k ), L ]T ( k ) d UL T(k): transmission coefficient d hv Total current in one-dimension IL 2e IR h UL 2e h f [ , L ]T ( ) d f [ , R ]T ( ) d UR I IL IR 2e h [ f ( , UL L ) f ( , R )]T ( ) d Low bias limit I IL IR 2e h [ f ( , L ) f ( , R )]T ( ) d UL f ( , L ) f ( , R ) eV 2 I 2e V h UL f G I /V G 2e h f G 2 h T ( ) d : conductance f T ( ) d UL ( ) 2e f ( , ) 2 T ( ) at low temperatures eV f ( , ) Landauer’s formula I 2 2e T ( )V I: current, V: bias h 2e G 2 T ( ) :Conductance h T ( ) G0 R 0 :transmission coefficient e 2 38 . 7μS :Quantum conductance 25 . 8 k :Quantum resistance h h e 2 Two- and four- terminal measurements Tow- and four- terminal measurement R mn , pq V pq / I mn R 21 ,12 R 21 , 43 h 1 2-terminal measurement 2 2e T h 1T 2e 2 T 4-terminal measurement Conductance of a quantum point contact Conductance of a quantum point contact Quantization of transverse motion Only one channel (n=1) is open. 2 (n, k z ) n ( z ) kz (z) 2m 2 T ( ) 1 for n=1 Nanowire of Au Nanowire of Au Nanowire of Au Mechanically Controllable Break Junction Histogram of conductance of a relay junction Conductance through a quantum dot Tunneling current via quantum dot e I T (E ) d dE h T ( E )[ f ( E ) f ( E eV ds )] dE (E EN ) 2 f (E ) :Lorentzian broadening of resonant tunneling through quantized energy EN of a dot 2 1 kT 2 exp( [exp( E EF kT E EF kT ) ) 1] 2 :Thermal broadening A bound state and a resonant state Transmission coefficient for resonant tunneling T pk T (E ) 1 ( v 2a E E pk /2 (T L T R ) If TL=TR T ( E pk ) 1 T pk ) 2 4T L T R (T L T R ) 2 Transmission coefficient of a resonant-tunneling structure Characteristics of resonant tunneling diode Resonant tunneling current k , k exp( ik r ) u k ( z ) z 2 (k , k z ) U L IL e dk z 2 0 n2 D ( ) k 2m h 2 kz 2 mk B T 2 d k ( 2 ) UL 2D 2 f ( ( k , k z ), L )] ln( 1 exp( / k B T )) kz 2 2m n :energy 2m v z ( k z )T ( k z )[ 2 L U L e 2 2 2 IL :wave function z ( L E )T ( E ) dE n2D Total resonant tunneling current 2 E UL J h e h 2m e JL 2 kz n 2D ( L E )T ( E ) dE 2D ( L E ) n 2 D ( R E )] T ( E ) dE UL [n UL Large bias and low temperature limit J L e m h 2 ( UL L E )T ( E ) dE Transmission coefficient for resonant tunneling T pk T (E ) 1 ( v 2a E E pk /2 (T L T R ) If TL=TR T ( E pk ) 1 T pk ) 2 4T L T R (T L T R ) 2 Profile through a three-dimensional resonant tunneling diode L Profile through a three-dimensional resonant-tunnelling diode. The bias increases from (a) to (d), giving rise to the I(V) characteristic shown in (e). The shaded areas on the left and right are the Fermi seas of electrons. Problems 10 Calculate the density of states for free electrons in one, two and three dimensions. Calculate the ballistic current in two dimensions. Calculate the transmission coefficient for a square barrier potential. Calculate the transmission coefficient for a double square barrier potential.