Transcript M 1
Polymer Synthesis CHEM 421 • Odian Book Chapter 6-2 Copolymers Polymer Synthesis CHEM 421 • Copolymers involve the use of two or more monomers • Copolymers allow us to tailor product properties – Tg – Tm • Commercially important (chain growth) examples include: – Styrenics » Styrene/acrylonitrile (SAN): increased impact resistance and solvent resistance; 10-40% AN, Samsonite luggage » Styrene/butadiene (SBR): 25% styrene/75% butadiene » Largest volume synthetic rubber (tires) » HIPS: High Impact PS (PBD-g-PS) » Styrene Maleic Anhydride (SMA) Copolymers Polymer Synthesis CHEM 421 • Commercially important copolymers (Cont’d) –Vinyl chloride » Rigid PVC: ca. 5% vinyl acetate, lowers Tg small amount allow to be processed a lower temperatures avoiding degradation » Flexible: 20-40% vinyl acetate (tubing, sheets (e.g. shower curtains, etc.) » Packaging: Saran Wrap® (90% vinylidene chloride) Copolymers • Commercially important copolymers (Cont’d) – Ethylene (> 10 billion lbs/yr) » LDPE (homopolymer!) » High pressure free radical » 30-40% x-tallinity » HDPE (homopolymer!) » Ziegler-Natta » 75% x-tallinity » Linear Low Density Polyethylene » Linear copolymer with 1-5 mol% α-olefins » EVA: Ethylene vinyl acetate: 2-40% vinyl acetate » Packaging, molding » EPR: Ethylene-propylene rubber (plus cure site monomer) » Ethylene/acrylic acid: (1-10 mol% AA); ionomer » Surlyn® Polymer Synthesis CHEM 421 Copolymers Polymer Synthesis CHEM 421 • Commercially important copolymers (Cont’d) –Fluoropolymers » PTFE: Tm = 335 °C, Tg = -70 °C » PVDF: Tm = 180 °C » FEP: Tm = 250 - 280 °C, Tg = 70 - 120 °C » ETFE: Tm = 225 °C, Tg = 145 °C » PFA: Tm = 300 °C » Teflon AF: » Nafion: Copolymerization Kinetics Polymer Synthesis CHEM 421 Homo-propagation Cross-propagation Terminal Model Copolymerization Kinetics ….. Penultimate Model Polymer Synthesis CHEM 421 Copolymerization Kinetics Polymer Synthesis CHEM 421 Homo-propagation Cross-propagation Cross-propagation Homo-propagation Terminal Model Copolymerization Kinetics Polymer Synthesis CHEM 421 Rp11 = k11 [M1•] [M1] Rp12 = k12 [M1•] [M2] Rp21 = k21 [M2•] [M1] Rp22 = k22 [M2•] [M2] Terminal Model Copolymerization Kinetics Polymer Synthesis CHEM 421 The rate of disappearance of M1 and M2 can be expressed as: d [M1] - ——— = k11 [M1•] [M1] + k21 [M2•] [M1] dt d [M2] - ——— = k12 [M1•] [M2] + k22 [M2•] [M2] dt Copolymerization Kinetics Polymer Synthesis CHEM 421 The ratio of the two rates is then: d [M1] ——— = d [M2] k11 [M1•] [M1] + k21 [M2•] [M1] —————————— k12 [M1•] [M2] + k22 [M2•] [M2] Simplify: d [M1] ——— = d [M2] [M1] ——— [M2] k11 [M1•] + k21 [M2•] —————————— k12 [M1•] + k22 [M2•] Copolymerization Kinetics Polymer Synthesis CHEM 421 Assume the Steady State Approximation: The concentrations of M1• and M2• are constant Therefore: The rate of addition of M1• to M2 will equal The rate of addition of M2• to M1 k12 [M1•] [M2] = k21 [M2•] [M1] Define: r1 = k11 ——— k12 k22 r2 = ——— k21 Copolymerization Kinetics Copolymer Composition Equation: d [M1] ——— = d [M2] [M1] ——— [M2] Molar ratio of the monomers in the copolymer r1 [M1] + [M2] ——————— [M1] + r2 [M2] Concentrations of the monomers in the feed Polymer Synthesis CHEM 421 Copolymerization Kinetics Copolymer Composition Equation: [M1] f1 = 1 – f2 = ————— [M1] + [M2] d[M1] F1 = 1 – F2 = ——————— d[M1] + d[M2] F1 = r 1 f12 + f1 f2 —————————— r 1 f12 + 2 f1 f2 + r 2 f22 Polymer Synthesis CHEM 421 Copolymerization Examples Polymer Synthesis CHEM 421 • r1 = r2 = 1.0 –Monomers exhibit no preference for homo-propagation vs cross-propagation –Truly random copolymer results 1.0 0.8 –F1 = f1 –Ethylene / vinyl acetate F1 0.6 0.4 0.2 A 0.0 0.0 0.2 0.4 0.6 f1 0.8 1.0 Copolymerization Examples Polymer Synthesis CHEM 421 • r1 = r2 = 1.0 • r1 = r2 = 0.0 –Monomers exhibit tendency to cross-propagate 1.0 –Alternating copolymer results –F1 = 0.5 –Styrene / maleic anhydride –TFE / ethylene 0.8 F1 0.6 B 0.4 0.2 A 0.0 –1-Butene / sulfur dioxide 0.0 0.2 0.4 0.6 f1 0.8 1.0 Copolymerization Examples Polymer Synthesis CHEM 421 • r1 = r2 = 1.0 • r1 = r2 = 0.0 • r1 and r2 between 0 and 1.0 1.0 –Common –Cross-over point » Azeotropic polymerization 0.8 F1 0.6 B C 0.4 0.2 A 0.0 0.0 0.2 0.4 0.6 f1 0.8 1.0 Copolymerization Examples Polymer Synthesis CHEM 421 • r1 = r2 = 1.0 • r1 = r2 = 0.0 • r1 and r2 between 0 and 1.0 • r1 >> 1.0 and r2 << 1.0 –Significant drift in feed ratio 1.0 D 0.8 F1 0.6 B C 0.4 0.2 A 0.0 0.0 0.2 0.4 0.6 f1 0.8 1.0